Team 16

Acoustic Position Sensor Team Members: Jacob Nicholson, Ian Cockrell, Nico Macchiavello, Jason Ripper, TJ Manifold

PROPORTION

Project Background

In this century, many engineers are brainstorming ways acoustics can be implemented to replace various applications. Acoustics can improve energy efficiency, improve accuracy, reduce expenses, and enhance communication. As a result, Proportion-Air introduced the idea of using acoustics to determine the position of a rodless pneumatic cylinder.

Problem Statement

The aim of this study is to use a combination of sound, microphones, sensors, integrated circuits (IC), processing, data, physics, and qualities such as resonance and harmonics to prove a concept and develop a prototype. If successful, there will be a way to accurately detect the position of a rodless pneumatic cylinder.

Requirements

Conceptualize a sensor that utilizes acoustics to determine piston position Prototype the sensor

Fourier Transform

Design Iteration 2

F.

Final Design

Prototype Cylinder Data

- Created working prototype •
 - Achieved expected data through the final design
 - Ready for sweep input to determine distance

٠

Sealed Pneumatic Cylinder

Pneumatic Test Circuit

Post-processing Circuit Setup

Sensor Output with LabVIEW

LabVIEW Data for 1kHz