Team #20

Team Members: Garrett Lee, Calahan Kindley, Drew Maynard, Matt Orejuela, Mike Lally, Aidan Hendrickson

PURDUE

Customer Background

Professor Milton Aguirre, an assistant professor in MET, has formed an international team of student engineers to create a Do-It-Yourself Exoskeleton. The DiY Exo uses an elastic band to store and release kinetic energy from the lower body (thigh) to the upper torso (chest).

Problem Statement / Scope of Work

Our team was tasked with designing and building a testing device for our client's DIY exoskeleton. This device would measure the applied force from the exoskeleton based on angular displacement of the human bending motion. The purpose is to aid in the development of exoskeleton technology by analyzing the performance of the energy storage mechanism of the DIY exoskeleton.

		Requirements					
Req. #	Design Requirements	Design Targets	Validation				
	Rationale						
1	Test bench is transportable	 Test bench width < 28 inches Test bench height <80 inches Test bench weight <150 lbs. 	Measure height, width, and weight of the bench				
	Test bench must be moveable between lab locations						
2	Test bench resembles a human	 Rotational velocity: 12-17 rpm Test bench range of motion: 120° Torso of test bench fits exoskeleton 	Measure range of motion, speed of test bench movements, exoskeleton fits securely				
	Test bench should look and move similarly to a human						
3	The cyclical condition of the test bench is controllable	 Control # of revolutions in cycle Starts & stops at standing position (0°) 	Trial run to see if rocker linkage stops where it began				
	The client wants to enter the # of cycles, and for the bench to start & stop in standing position (0°)						
4	Force & displacement data is captured	 Applied forces acting on torso are captured Rotational displacement of torso is captured 	Trial run to test if data is being acquired				
	Client wants to analyze the relationship between force and displacement throughout range of motion						
5	Data is displayed digitally, in real time	 Data displayed within 1 minute of cycle reading Digitally display sensor data on one graph: displacement on x-axis, force on y-axis 	Trial run to test if data is displayed in sufficient time				
	Client expects data to be represented in a timely manner						
6	Test bench does not tip over during	Design bench so center of gravity is below the pivot point (hip joint)	Weigh the torso and leg section of test bench				

Requirements Matrix

It is important that the bench assembly is stable, so it is safe during use & transportation

testing

DIY ExoSkeleton Testbench

Mentor/Client: Ralph Mungua/Milton Aguirre

Team #20

PURDUE

FMEA

FAILURE ANALYSIS (STEP 4)				RIŞK ANALYSIS (STEP 5)				
. Failure ects (FE) to he next ther Level lement and/or thicle End	Severity (S) of FE	2. Failure Mode (FM) of the Focus Element	3. Failure Cause (FC) of the Next Lower Element or Characteristic	Current Prevention Control (PC) of FC	0 ocurrence (0) of FC	Current Detection Controls (DC) of FC or FM	Detection (D) of FC/FM	DEMEAAP
tor would in at too igh of a speed	10	Linkage Breaks	Inadequate strength of linkages material	FEA Analysis assures adequate strength of linkages	m	Material specifciations match the load being applied	2	60
est bench not rotate ull ROM	7	Linkage Bends	Inadequate strength of linkages material	FEA Analysis assures adequate strength of linkages	3	Material specifciations match the load being applied	2	42
cage is not itrolled by joint	9	Joint detatches	Inadeuqate strength of joint material or attachemnt to linkages	FEA Analysis assures the strength of the joints to the linkage.	m	Material specifications match the joint specifications being applied.	2	54
nd allows skeleton function. d Isn't too ose that	4	Band Snaps	Inadequate thickness and length	FEA Anlaysis assures band is strong and small/long enough to withstand force being applied	2	Material Specifications match the force applied	2	16
Motor eataches 't be used sain until	6	Poor assembly	Bolts and screws are't strong enough	FEA Analysis assures bolts and screws are strong enough	4	Material specifications match the motor requirements.	2	48
est bench loes not latch the leed of the human	5	Inaccurate data	Motor requirement do not match the application	FEA Anlaysis assures the motor runs at the desired speed	3	Motor speed specifications match the application speed	2	30

Testing

Testing Data

The graph above shows how the force fluctuates as the system bends forward. The two peaks indicate the bending position where the Exoskeleton is applying the most force.