Team # 4

Pneumatic Monitoring Standardization in AR FC's

Team Members: Grayson Plew, Adrian Huizar, Megan Wulff and Yonas Araya

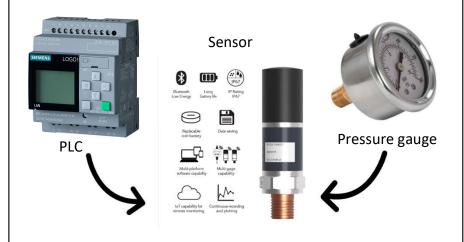
Mentor / Client: Dave Merrick and Joseph Mueller Purdue Professor: Dr. Fred Berry & Dr. James Condron

Customer Background

Amazon Distribution Centers have been supplying and distributing packages for millions of people. Their advanced facilities and able workforce provide a strong, reliable service to all customers worldwide.

Problem Statement / Scope of Work

Amazon RME team has no way of monitoring their pneumatic systems for leaks. They are experiencing a high amount of downtime and have tasked us with creating a monitoring system. The system needs to communicate remotely, allow for real-time and historical data analysis, and be viewed anywhere in the country.


Testing

Gage	# of Readings	Max	Min	TIR	
BluePSI3E47-P	780	38.5786	16.3071	22.2714	

Experimentation and Concepts

Final Design

Mechanical Design

Software

Requirements

Re q#	Design Requirement s	Validation	Design Target
1	Design, build & purchase sensor	Monitor pressure is within ±1 PSI	Sensor detects pressure
2	Quantity of sensors	50-150 sensors	Sensors places in areas that exhibit faults & leaks
3	Digital Wi-Fi interface	Strong, uninterrupted, connectivity established	Information sent (high pressure, good pressure, low pressure)
4	Preventive/Pr oactive Maintenance	<75 hours of downtime/mo nth	Turnaround time decreased
5	Analytics / Research Development	Data Transfer to Excel	Data collected from system
6	Set ranges for warnings	Warning alert (<60 PSI or >30PSI) Cation alert (<70 PSI or > 20 PSI)	Alerts sent to teams

FMEA

Engineering Location Customer Name Model Year(s)/Platform(s) STRUCTURE 1. Next Higher Level	West Lafayette, I Joseph Mueller (2022-2023 ANALYSIS (ST 2. Focus Element	Amazon)	FUN: 1. Next Higher Level Function and Requirement	CTION ANALYSIS 2. Focus Element Function and Requirement	DFMEA Start Date DFMEA Revision Date Cross Functional Team (STEP 3) 3. Next Lower Level Function and Requirement or Characteristic	28-Nov-2022 25-Apr-2023 2022-2023 Caps FAIL 1. Failure Effects (FE) to the next Higher Level Element and/or Vehicle End User	OF FE	RE ANALYSIS (S' 2. Failure Mode (FM) of the Focus Element	TEP 4) 3. Failure Cause (FC) of the Next Lower Element or Characteristic	RISK ANALY Current Prevention Control (PC) of FC	Occurrence (O) of FC (O)	Current Detection Controls (DC)	A FC/FM	DFWEAAP
PVC Piping	Couplings	Threads	Provides a path for compressed air to travel to assets	Connects individual pipes and assets together to create a pressurized system	Fastens sensors and other couplings together	Piping does not withstand or control air from the compressor	3	Couplings do not fit or provide a snug fit between pipes	mismatch or do	Research into pipe specifications and 4 capabilities	4	Hand testing the strength of the assembly by pulling apart	6	L
Air Compressor	Couplings	Seals	Generates pressurized air needed for testing and operations	Connects compressor outlets to pipes and other assets	Reduces unwanted pressure losses within the system	Compressor does not reach desired pressures		or provide a snug fit	components are not sealed	Function analysis and specification research into specific model of compressor	5	Use of compressor continued, but with different pressure readings	5	L
Sensor	Mechanical fasteners	Screws/bolts	Detects, measures, and records the pressure of the system at a point	Connects sensors to the system at determined locations	Fastens sensors to the system to prevent durability issues	Sensor is not compatable with piping	3	hold assets in place	withstand	Further research into functionality and compatability of asset	В	Fasteners hand tested by	5	м