Team #30

PURDUE POLYTECHNIC

Customer Background

Los Alamos National Laboratory's (LANL) mission is to solve national security challenges through simultaneous excellence. The Department of Energy funds the facility but LANL is managed by Triad National LLC. This company is made up of the nonprofit Battelle Memorial Institute, the Texas A&M University System and the University of California University System. Even though they primarily research nuclear weapons, other fields housed in the facilities as well. This research facilities house a nanotechnology center, electron microscopy lab, explosives center, high magnetic field laboratory, and a unique proton radiography center. They are trailblazers in science, technology and engineering for the entire nation.

Problem Statement/Scope of Work

Currently, document-based systems engineering (DBSE) product life cycles at LANL are corrupted by three scenarios; product definition change, missed change impact, and copy-paste propagation. The three scenarios are based on data that is changed in one step of the product process but not changed in the others. These errors can be avoided by utilizing a digital thread that links all steps of the product life cycle together. These steps can be defined as dimensions in the CAD data, physical analysis in Matlab, and manufacturing information. Transforming LANL from a DBSE to a model-based systems engineering (MBSE) will improve transparency by not only introducing and encouraging a constant feedback loop, but also reduce error likelihood thus increasing efficiency and reducing development costs. Like how JavaScript is a programming language, MBSE uses a modeling language called SysML to enable engineers to create and maintain blocks that encompass software, hardware, data, process and concepts. A system is defined by four components described as the four pillars of SysML. They are Requirements, Structure, Behavior, and Parameters. This project explores MBSE by designing a simple system like a blaster through the lens of MBSE and the SysML pillars. A digital thread is utilized in order to avoid the three previously stated complications. There are two deliverables at the end; the physical, 3D printed system and the Cameo model that fits within the digital thread.

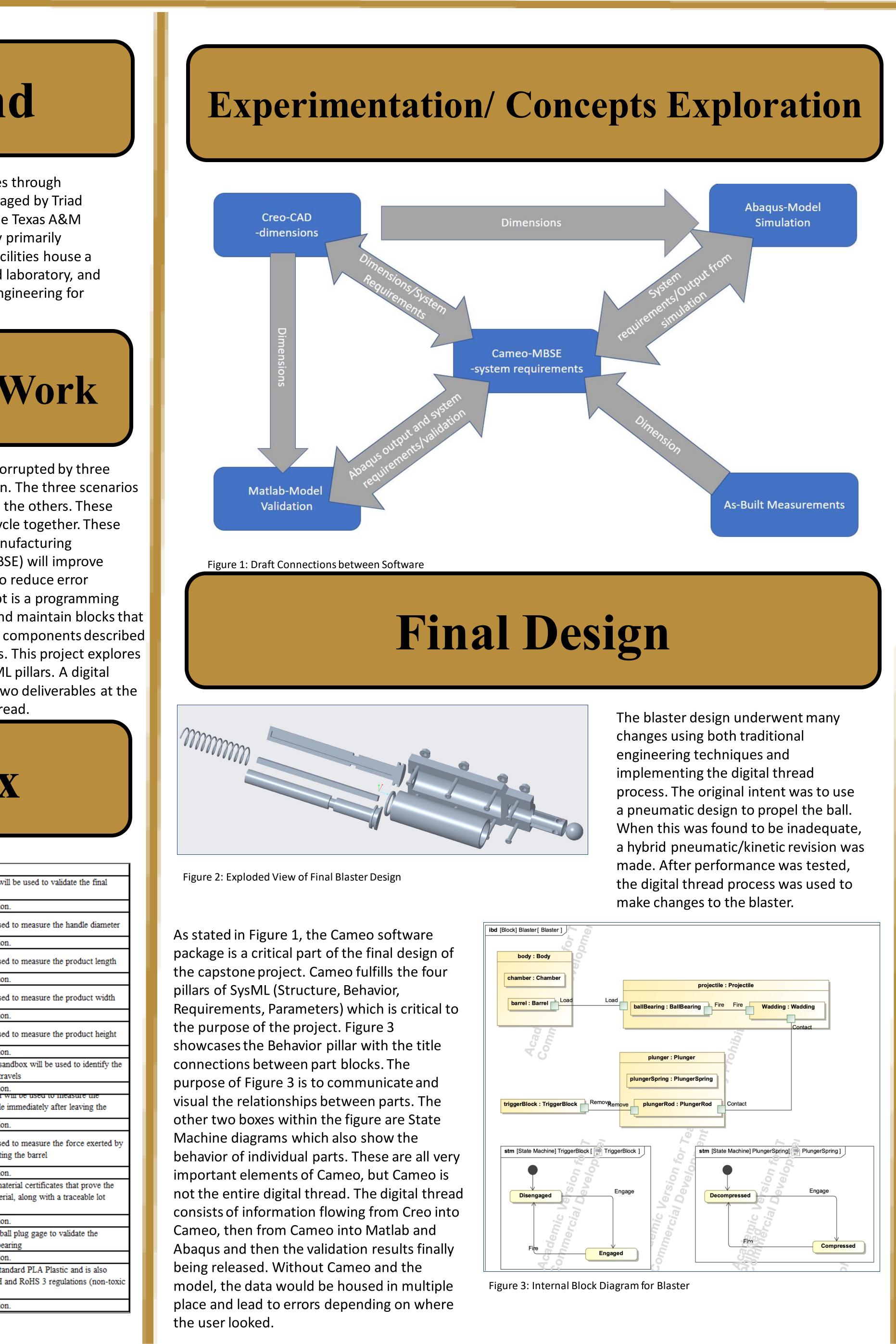

Requirements Matrix

Table 1: Requirement Matrix

Rep. #	Requirement	Description	Test to Verify					
1	Product weight should not exceed	Since this product is typically used by children, the overall design of the product	A triple beam balance will					
1	4.6kg	must be light and ergonomic.	weight					
	Rational and Reference: In the meeting on 10/14, the client Denver Smith set these requirements with the capstone team in the project introduce							
2	Product handle diameter must be	As this is a handheld product, it must be relatively compact and organomic	A dial astimor will be used					
2	between 0.75 and 1.5 inches	As this is a handheld product, it must be relatively compact and ergonomic	A dial caliper will be used					
	Rational and Reference: In the meeting on 10/14, the client Denver Smith set these requirements with the capstone team in the project introdu-							
3	Product length must not exceed	As this is a handheld product, it must be compact and small enough to hold with one	A dial caliper will be used					
2	15 inches	hand.	A dial caliper will be used					
	Rational and Reference: In the mee	ting on 10/14, the client Denver Smith set these requirements with the capstone team	in the project introduction					
4	Product width must not exceed 3	As this is a handheld product, it must be compact and small enough to hold with one	A dial caliper will be used					
4	inches	hand.	A dial caliper will be used					
	Rational and Reference: In the meeting on 10/14, the client Denver Smith set these requirements with the capstone team in the project introduction.							
5	Product height must not exceed 9	As this is a handheld product, it must be compact and small enough to hold with one	A dial caliper will be used					
5	inches	hand.	A dial caliper will be used					
	Rational and Reference: In the meeting on 10/14, the client Denver Smith set these requirements with the capstone team in the project introduction							
6	Projectile distance must not	This product is based off a children's toy and is also handheld and thus we do not	A measuring tape and san					
0	exceed 30 meters	want the projectile distance to not exceed 30 meters	distance the projectile trav					
	Rational and Reference: In the meeting on 10/14, the client Denver Smith set these requirements with the capstone team in the project introduction							
7	Projectile velocity must not	This product is primarily handheld and not intended to injure people. Thus, the	velocity of the projectile i					
/	exceed 100 meters per second	velocity must not exceed 100 meters per second	velocity of the projectie i					
	Rational and Reference: In the mee	ting on 10/14, the client Denver Smith set these requirements with the capstone team	in the project introduction					
	Projectile force immediately out of	The product is not intended to cause bodily harm and thus will not exceed a force of	A force plate will be used					
8	the barrel must not exceed 8	more than 8 Newtons	the projectile when exiting					
	Newtons	hibre than a rewtons	the projectile when exiting					
	Rational and Reference: In the mee	ting on 10/14, the client Denver Smith set these requirements with the capstone team	in the project introduction					
		As steel ball bearings are simple to acquire and have uniform construction and	The vendor provides mate					
9	Projectile material must be steel	hardness, they are the best choice for projectile material	authenticity of the materia					
		hardness, mey are me best choice for projectile material	number					
	Rational and Reference: In the mee	ting on 10/14, the client Denver Smith set these requirements with the capstone team	in the project introduction					
10	Projectile shape must be circular	A circular projectile will have uniform air resistance and will also have balanced	We will use a Bal-Tec bal					
10	and uniform	weight thus allowing for accurate theoretical calculations	uniformity of the ball bear					
	Rational and Reference: In the meeting on 10/14, the client Denver Smith set these requirements with the capstone team in the project introduction							
11	Product material type must be	PLA plastic is both durable and easy to use when 3D printing through additive	The vendor provides stan					
	PLA Plastic and also REACH and	manufacturing. This is both light and strong enough to withstand the force of the	compliant with REACH as					
	RoHS compliant	projectile	substances)					
	Rational and Reference: In the mee	ting on 10/14, the client Denver Smith set these requirements with the capstone team	in the project introduction					

Digital Thread Blaster

Team Members: Jack Kinsel, Vibhu Bulusu, Sasha Marcone, William Longsworth, Keita Arakawa Mentors: Dr. James Condron Professors: Dr. Fredrick Berry

Failure Mode and Effect Analysis

Table 2: FMEA

FMEA - Faliure Modes and Effective Analysis										
Key Process Step	Potential Faliure Mode	Potential Faliure Effects	SEV	Potential Causes	OCC	Current Controls	DET	RPN	Actions Taken	
Movement of Plunger										
Plunger Moves Back	Plunger wont move	Spring tension cannot be obtained	8	Spring is jammed; trigger release is jammed; chamber is too tight	7	Tolerance of joined parts	8	448	Shave printed pieces so no excess	
Plunger Moves Back	Plunger doesn't stay cocked	Spring tension cannot be obtained	8	Trigger release is broken off; trigger release is not engaged	7	Enlargen trigger release; ensure pieces must touch in CAD	8	448	Enlargen trigger	
Plunger Moves Forward	Plunger is jammed	Ball is not hit	8	Spring is jammed; trigger release won't relase; chamber is too tight	7	Tolerance of joined parts	8	448	Shave printed pieces so no excess	
Plunger Moves Forward	Plunger moves too fast	Projectile has too much velocity	3	Spring is too compressed	3	Set specific travel distance for spring with location of spring release	8	72	Replace spring with less one with less K constant	
Plunger Moves Forward	Plunger stops midway	Ball is not hit	8	Cyclinder is too constricted ; spring tension is weak; obstruction in chamber	2	Tolerance of joined parts; spring K constant is strong; file inside of chamber	8	128	Shave printed pieces so no excess	
				General	-			-		
Trigger System	Trigger is jammed closed	Spring tension cannot be released	8	Trigger is jammed; trigger relase is jammed; housing is too tight	6	tolerance of trigger housing	8	384	Shave printed pieces so no excess	
Ball bearing is Shot	Plunger does not hit	Projectile is not launched	8	Plunger spring is too loose	1	Spring K constant is calculated and given an level of error correctly	8	64	Larger sptring inserted	

To measure the distance that the ball travelled, along with the exit velocity of the pneumatic gun, we implemented the following test set up as seen in Figure 6. We Tested each iteration of the gun 30 times and marked off where it was landing on the carbon paper as well as recording the exit velocity for each shot.

Figure 6: Overall Distance Testing Setup

Tukey Pairwise Comparisons

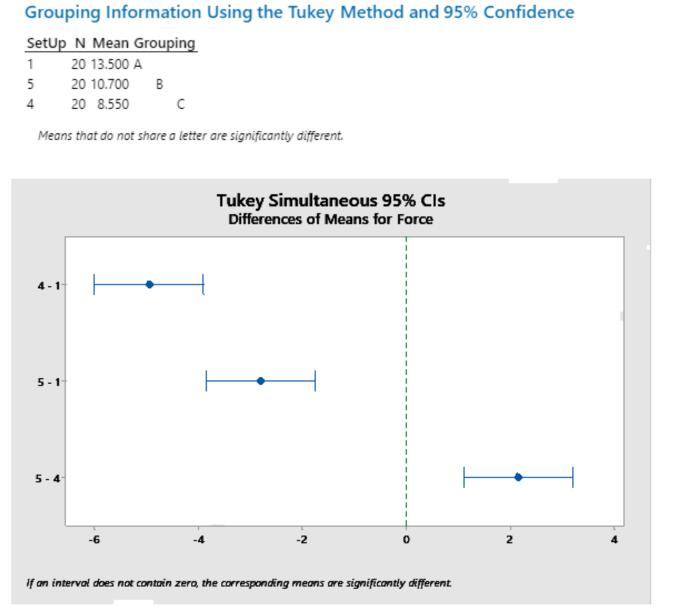


Figure 6: Tukey Comparison of Different Plungers on Force

Los Alamos NATIONAL LABORATORY EST.1943 — _____

Team #30

Testing

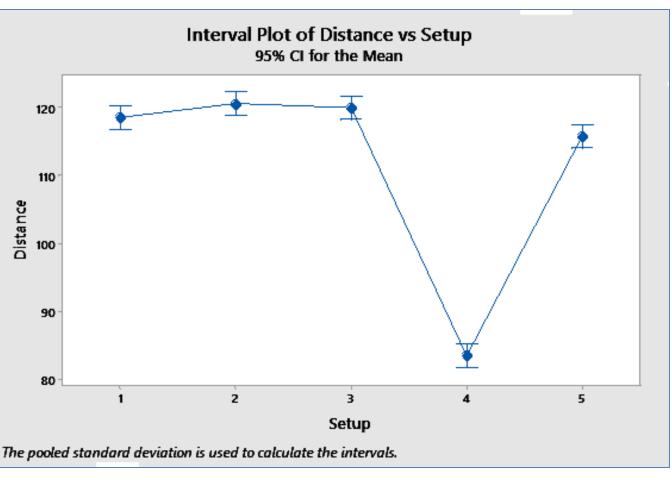


Figure 4: Comparison of Different Setups on Mean Distance

Grouping Information Using the Tukey Method and 95% Confidence Setup N Mean Grouping

2	30 120.60 A		
3	30 119.967 A		
1	30 118.533 A	В	
5	30 115.767	В	
4	30 83.43		(

Means that do not share a letter are significantly different.

Figure 5: Tukey Comparison of Different Setups on Mean Distance

To measure the force exerted by the slug directly out of the barrel a test, which can be seen in Figure 7, was set up using a force plate. Through this test, the exerted force was calculated by taking the absolute value of the difference between the initial and final output in newtons. The 1.5-inch, 1.75-inch, and 2-inch slugs were each tested thirty times.

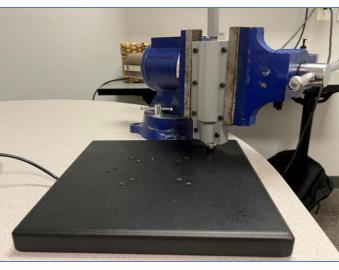


Figure 7: Force Plate Testing Setup