Team 16.75

Pneumatic Demonstrator Applications Using Electronic Digital Control

Team Members: Sam Burroughs, Tim Metken, Nicholas Garcia, Henry Cerneck Mentors: Fred Berry, Jose Garcia Bravo

Customer Background

Proportion-Air, Inc. is a reputable manufacturer of electronic air pressure regulators and air flow control valves. The company was established in 1985 by its corporate president, Daniel E. Cook, he is the creator of a groundbreaking invention - the electronic air pressure regulator. This device is engineered to accept a wide range of electronic analog and digital signals, providing extreme accuracy in controlling pneumatic pressures, while mitigating the impact of vibration, mounting position, and environmental factors

Problem Statement / Scope of Work

Our team aims to bridge the existing instructional tools and pneumatics technology. Our proposed instructional system helps students understand industry-standard pneumatic systems and Proportion-Air components. We have added modules to an existing device for Proportion-Air's engineer and sales training. With our system we can control power output, rotary pneumatic actuator speed, and vacuum systems to demonstrate system power control, cutting speed, and suction cups.

Requirements

Proportion-Air tasked us with two major project requirements:

- Control pneumatic power
- Demonstrate this concept and monitor it

This evolved into us using an angle grinder and vacuum lifter to demonstrate this, and a PLC and HMI to monitor it in real time .

Experimentation and Concepts

In order to house the electrical and mechanical components of the project, two custom pieces were designed to ergonomically hold the pieces. This was outside the original scope of work, but we knew it was necessary to show off the Proportion-Air Equipment

DSB Pressu

Transducer

Program Sta

Additionally, an Allen Bradly PLC is used to monitor the pneumatic devices. The code for this was written custom by our electrical lead and underwent many iterations

PLC controller

Programming Concept

New panel display

Power (HP) PROPORTION-AIR Suction Cup Pressure (psi) Flow (SCFM) Lifting Force (lbf)

FMEA

		FMEA - Failure Modes and	Effects A	nalysis			
Key Process Step	Potential Failure Mode	Potential Failure Effects	SEV	Potential Causes OCC	Current Controls	Actions Taken	
Pneumatic System							
Delivery of air to electro pneumatic systems and accessory devices	Airlines and fittings	Reduced flow or failure to deliver air to components	•	Airline detaches from fitting	⁴ Visual inspection of fittings and airlines	Testing and inspection to make sure all airlines an secure	
Angle Grinder							
Demonstration of power control	Angle grinder disk	increased safety risk or possible injury	10	Inproperly secured angle grinder disk	Visual inspection of 1 angle grinder disk before demonstration	Manual inspection of angle grinder disk, safety check of surrounding demonstration area, and personal protective equipment.	
Demonstration of power control	Angle grinder	The angle grinder will not function, meaning we cannot demonstrate the capabilities of the system	2	Reduced or Insufficient flow from air supply	Use air supplies that can provide at least 90 scfm of air to the system for propper function of the angle grinder	Continue to use air supplies with sufficient flow to demonstrate our system.	
Firstrical System							
Data being shared with the user from electro- pneumatic sensors	Internal wiring	Inaccurate information or no information is given to user	a	Sensor's wiring connected incorrectly	Manual and visual 3 inspection of electrical connections	Sufficient testing and continued visual and manual inspection of wires and sensors.	
		Display Case I	nlay				
Securing all internal components	Fasteners	Loose or detached components could be damaged		Vibration and handling could cause fasteners to come loose	1 Securing all fasteners and components	Torquing all fasteners before moving the case and inspecting the inlay for loose components	

Testing

Electrical System Testing								
Step	Test	Details	Outcome					
1	Sensor Inputs	The PLC reads the inputs from the flow and pressure sensor	All of the sensors are reading to the PLC					
2	HMI Data Display	HMI shows both the data from the sensors and the figures that are calculated	HMI displays all data values					
3	HMI Screens	HMI can switch between the different screens for the Angle Grinder and the Suction Cup	HMI successfully switches between the two screens					
Mechanical System Testing								
4	Angle Grinder Speed Control	The speed of the angle grinder is controlled by the potentiometer connected to the EPR	The potentiometer successfully varies the speed of the angle grinder					
5	Suction Cup Force Control	The lifting force of the suction cup is controlled by the potentiometer connected to the EPR	The potentiometer successfully varies the lifting force of the suction cup					

HMI Displays

PROPORTION