Group 19:

# PURDUE UNIVERSITY

# **CUSTOMER BACKGROUND**

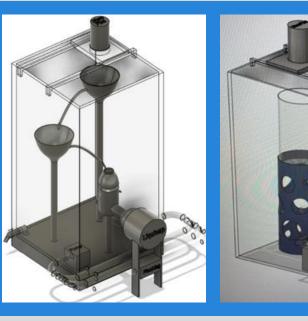
Endress+Hauser is a global leader in measurement instrumentation, services, and solutions for industrial process engineering. Endress+Hauser works with Purdue University Polytechnic Capstone group to promote learning in interactive hands-on projects. They supply all of the necessary learning materials and unique parts for the best quality projects from engineering technology students. The mentors at E+H work one on one with the students and go above and beyond in ensuring that we get the most accurate information in a timely manner.

# **PROBLEM STATEMENT**

- Design, build, and test a portable process automation demonstration unit.
- For the redesign, we have a base, but will make improvement on the tubing materials, the pump, and the drainage system.
- By making these changes we will have a sustainable unit that will stay intact through travel and remain durable.

| Req. | DESIGN REQUIREMENTS                                                                                                                                                                                                                                   | DESIGN TARGETS                                                                                       | VALIDATION                                                            |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| #    |                                                                                                                                                                                                                                                       | RATIONAL                                                                                             |                                                                       |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                       | All pieces of the demostration system and case                                                       | All sensors, materials, case, and any other equitment when            |  |  |  |  |  |  |
| 1    | Portable for Demonstrator                                                                                                                                                                                                                             | equal 40-50 lbs or less                                                                              | combined weighs less than 40-50 lbs                                   |  |  |  |  |  |  |
|      | Weight is large contributor to the portability of the unit. The more managable the weight, the easier transportation will be for the demonstrator                                                                                                     |                                                                                                      |                                                                       |  |  |  |  |  |  |
|      | The unit to demonstrate characteristics of the process                                                                                                                                                                                                | The sensors will need to check flow, level,                                                          | The unit will a use Micropilot FMR10, Liquicap FMI51, Picomag         |  |  |  |  |  |  |
| 2    | medium                                                                                                                                                                                                                                                | pressure, temperature, and pH of the unit.                                                           | Flow Meter                                                            |  |  |  |  |  |  |
|      | Displaying the characteristics of the unit is important to teach K-12 and college students the basics of fluid mechanics. The purpose of the unit is to showcase Endress+Hauser sensor usability                                                      |                                                                                                      |                                                                       |  |  |  |  |  |  |
|      | Process medium needs to accessible, disposable, and work                                                                                                                                                                                              | The system will operate with water as the                                                            | The system will be able use water as the process medium, and          |  |  |  |  |  |  |
| 3    | with the sensors                                                                                                                                                                                                                                      | medium                                                                                               | easily dispose of the medium for clean up.                            |  |  |  |  |  |  |
|      | Water is one of the most readily aviable process mediums. It is non toxic, and acessible in schools, offices, or other places where the unit will be used. Water can also be disposed with ease down any drain. Water is compatible with the sensors. |                                                                                                      |                                                                       |  |  |  |  |  |  |
| 4    |                                                                                                                                                                                                                                                       | The demonstration unit can be plugged into any                                                       | When you plug in the unit into multiple outlets, it will work in      |  |  |  |  |  |  |
|      | Any electrical for the unit will need to access a 110V outlet                                                                                                                                                                                         | oultet in a room and be fully operational.                                                           | every one of them                                                     |  |  |  |  |  |  |
|      | A 110 V outlet is standard for US power outlets.                                                                                                                                                                                                      |                                                                                                      |                                                                       |  |  |  |  |  |  |
| 5    | The unit needs standard operating instructions                                                                                                                                                                                                        | An instruction manual outlining assembly,                                                            | The demonstator will be able interpret work instructions for an       |  |  |  |  |  |  |
|      | The max needs Annual operating and activity                                                                                                                                                                                                           | disassembly, packing, and troubleshooting                                                            | assembly/disassembly and complete it in under 30 minutes              |  |  |  |  |  |  |
|      | A manual will create a defined way for using the unit and trou                                                                                                                                                                                        | bleshooting for any potential issues.                                                                |                                                                       |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                       | This device will be able to accurately read and                                                      | Validating the Cerabar will come from testing this product for        |  |  |  |  |  |  |
| 6    | Pressure Sensor - Cerabar                                                                                                                                                                                                                             | transmit the pressure information                                                                    | functionality and using the pump to create to read known pressu       |  |  |  |  |  |  |
|      | One of the important fluid values requested by E+H is the pre-                                                                                                                                                                                        | One of the important fluid values requested by E+H is the pressure information inside of the system. |                                                                       |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                       | This device will need to accurately read and                                                         | In order to validate the PicoMag, the team will be checking the       |  |  |  |  |  |  |
| 7    | Level Sensor - PicoMag                                                                                                                                                                                                                                | transmit the level information.                                                                      | distance measurements against known height values to check for        |  |  |  |  |  |  |
| · ·  |                                                                                                                                                                                                                                                       |                                                                                                      | functionality.                                                        |  |  |  |  |  |  |
|      | A fluid value requested by E+H is the level information of the                                                                                                                                                                                        | unit.                                                                                                |                                                                       |  |  |  |  |  |  |
|      | Flow Meter - Micropilot                                                                                                                                                                                                                               | This device will have to accurately read and                                                         | Valdiating the functionality of the flow meter will come from u       |  |  |  |  |  |  |
| 8    | The sector sectores                                                                                                                                                                                                                                   | transmit the flow rate information                                                                   | the pump and expected flow rates to measured values.                  |  |  |  |  |  |  |
|      | The flow rate of the unit is a requested value from E+H.                                                                                                                                                                                              |                                                                                                      |                                                                       |  |  |  |  |  |  |
|      | A pump will be needed to move the fluid through the system                                                                                                                                                                                            | This pump will large enough to meet all flow                                                         | The pump will be tested for appropriate flow rate values and then     |  |  |  |  |  |  |
| 9    |                                                                                                                                                                                                                                                       | rate minimums of the fluid sensors from E+H                                                          | tested in tandem with the fluid sensors                               |  |  |  |  |  |  |
|      | he pump will need to output the expected flow rate in order for the sensors to operate. The pump is critical to the functionality of the unit.                                                                                                        |                                                                                                      |                                                                       |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                       | The unit will need to unable to leak during or                                                       | The unit will be assembled, filled, and assessed for any leakage of   |  |  |  |  |  |  |
|      | The unit will need to be leak proof                                                                                                                                                                                                                   | after use. The connection points between tubing                                                      | the process medium.                                                   |  |  |  |  |  |  |
| 10   |                                                                                                                                                                                                                                                       | and sensors will need to be sealed.                                                                  |                                                                       |  |  |  |  |  |  |
|      | Leakage was the critical issue for the previous group, any sort of leakage would not be improving the other iteration. Leaking is also an issue for keeping the operational.                                                                          |                                                                                                      |                                                                       |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                       | The travel enclosure will need to be large                                                           | The travel enclosure will need to be able to fit inside of trunk of a |  |  |  |  |  |  |
| 11   | The unit will need a travel enclosure                                                                                                                                                                                                                 |                                                                                                      | car or on an airplane for travel. The unit will be placed in the case |  |  |  |  |  |  |
| 1.1  |                                                                                                                                                                                                                                                       | from travelling stresses it could encounter                                                          | and impacted test for durability.                                     |  |  |  |  |  |  |
|      | If the enclosure is unable to protect the unit, it has the chance to break during travel or be too large to travel efficiently                                                                                                                        |                                                                                                      |                                                                       |  |  |  |  |  |  |

# Taylor Jackson, Emily Laux, Max Imler, Andrew Nelson, Mitchel Mayer


## **EXPERIMENTATION AND CONCEPTS**

#### LASER CUTTER EXPERIMENTATION

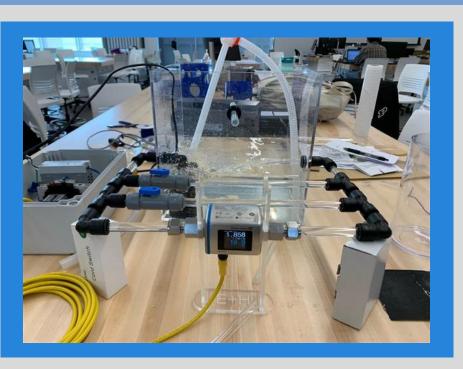
Laser Cut Parts

- Micropilot Rails
- Picomag/Cerabar Stand pieces
- Fountain Holes
- Casing Holes





FIRST AND SECOND CAD SOFTWARE CONCEPTS




PORTABLE DEMONSTRATION UNIT 2022



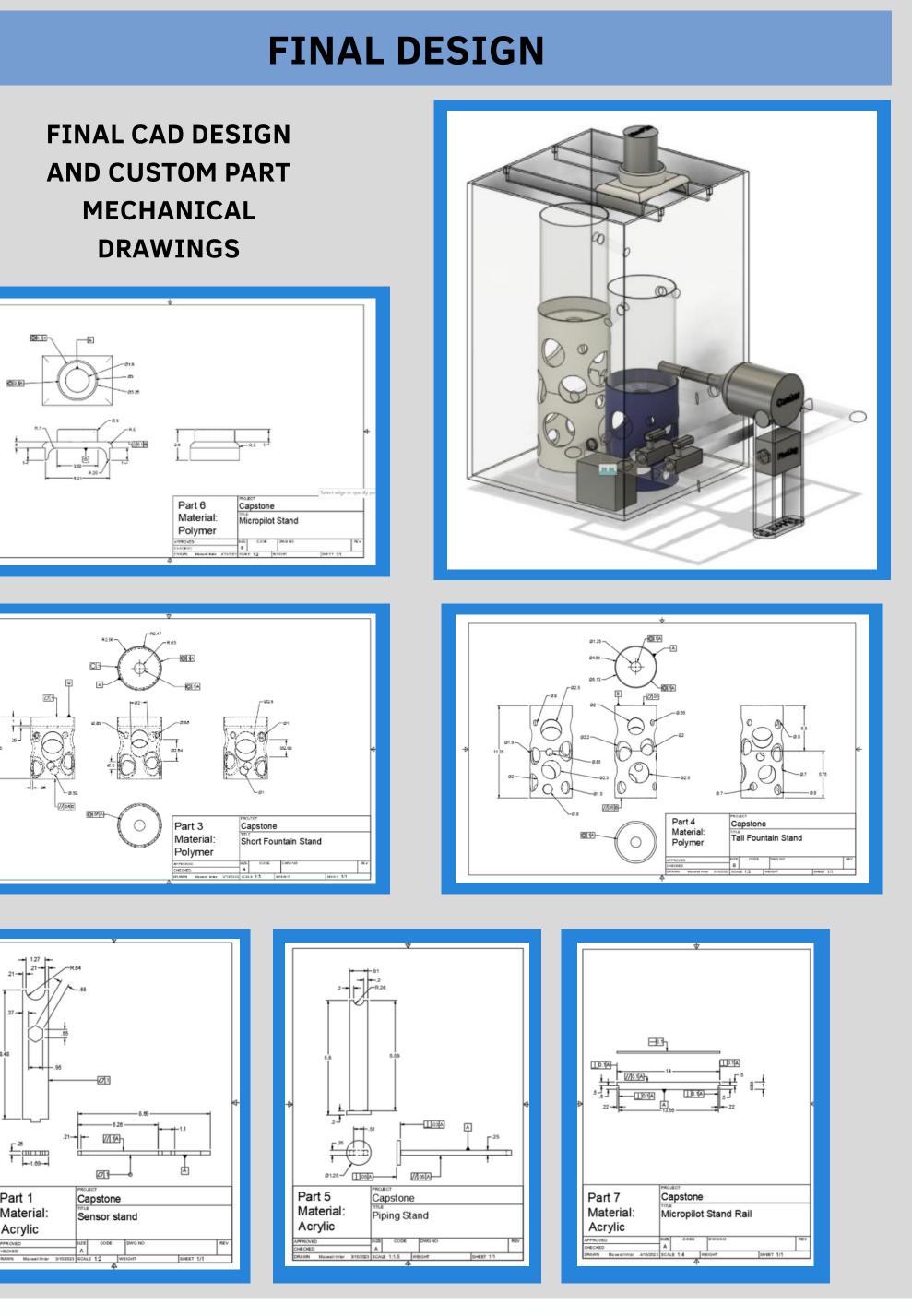
INITIAL PIPE LAYOUT CONCEPTS

# TESTING



The testing phase of the project consisted of operating the system and checking for leaks with the seals, tubing, and fittings. The three primary sensors were checked for proper connection and operation.




|  | 8.4 |
|--|-----|
|  |     |

# **FMEA**

|          |                                                      | PLANNING AND PREPARATION (STEP 1) |                              |                                                  |                                                  |                                              |                                                                      |                                                        |                                              |                                                          |                                                     |                                          |                            |
|----------|------------------------------------------------------|-----------------------------------|------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------|----------------------------|
|          |                                                      | Company Name                      | Endress + Hauser             |                                                  |                                                  | Subject                                      |                                                                      |                                                        |                                              |                                                          |                                                     |                                          |                            |
|          |                                                      | Engineering Location              | Greenwood,IN                 |                                                  |                                                  | DFMEA Start Date                             | 11-Nov-22                                                            |                                                        |                                              |                                                          |                                                     |                                          |                            |
|          | Customer Name                                        |                                   | None DFMEA Revision Date     |                                                  | 11-Nov-22                                        |                                              |                                                                      |                                                        |                                              |                                                          |                                                     |                                          |                            |
|          |                                                      | Model Year(s)/Platform(s)         | (s) Capstone 2               |                                                  | ostone 2022-2023                                 |                                              | Cross Functional Team                                                | 2023 Capstone Class                                    |                                              |                                                          |                                                     |                                          |                            |
|          | Continuous<br>Improvement                            |                                   |                              |                                                  | FUNCTION ANALYSIS (STEP 3)                       |                                              | FAILURE ANALYSIS (STEP 4)                                            |                                                        |                                              | RISK ANALYSIS (STEP 5)                                   |                                                     |                                          |                            |
| il const | History / Change<br>Authorization (As<br>Applicable) | _                                 | 2. Focus Element             | 3. Next Lower Level<br>or<br>Characteristic Type | 1. Next Higher Level<br>Function and Requirement | 2. Focus Element Function<br>and Requirement | 3. Next Lower Level Function<br>and Requirement or<br>Characteristic | 1. Failure Effects<br>(FE) to the next<br>Higher Level | 2. Failure Mode (FM)<br>of the Focus Element | 3. Failure Cause (FC)<br>of the Next Lower<br>Element or | Current Prevention Control<br>(PC) of FC            | Current<br>Detection<br>Controls (DC) of | Detection<br>DHNEA<br>EnAR |
|          |                                                      | Portable Demonstration Unit       | display unit                 | •                                                | Demonstrates movement<br>water                   | products are shown how<br>they are used      | the products are mounted in<br>the correct manner                    | the unit leaks                                         | 8 the tubes connectors<br>got worn out       | tube connectors                                          | buy different connecters                            | 5 their is water<br>on the ground        | 6 M                        |
|          |                                                      |                                   | Endress + Hauser<br>products | tubes                                            | Transports with ease                             | Can fit in a case                            | can be taken in and out of case                                      | pump is not<br>pumping water                           | 6 the pump is not strong<br>enough           | · · ·                                                    | look at many different pumps<br>to get the best one | 4 water is not<br>moving                 | 5 L                        |
|          |                                                      |                                   |                              |                                                  | Does not leak                                    | the tubes are detachable                     | the tubes are clear                                                  | Not being able to<br>drain water                       | 5 water could spill out                      | tank                                                     | get the correct tank                                | 7 water is on the<br>ground              | 7 M                        |

Endress+Hauser

People for Process Automation



### DESIGN FAILURE MODE AND EFFECTS ANALYSIS (DESIGN FMEA)