Team 31

Southwire Talc Application Improvement

Purdue Students: Stephen Bonebrake, Gabe Oviedo, Ryan Hunsberger, Jonathan Diaz, & Collin Welles Customers: Todd Huff & Bob Miller Purdue Professors/Mentors: Dr. Fred Berry & Dr. Sara Leach

PURDUE TECHNIC

Customer Background

"Our roots extend to 1937 when Roy Richards, a recent graduate of Georgia Tech, started a company to erect power poles. On March 23, 1950, Richards founded Southwire with three used machines and a workforce of 12 employees. Today, Southwire's reputation for quality and service continues to grow boating more than 7,000 employees throughout the world."

Problem Statement / Scope of Work

The Bremen East Facility of Southwire noticed an issue with the talc application process in their facility. The process was producing a lot of scrap wire. For this project team 31 took the job of improving this process, and significantly reducing the amount of scrap produced in this process.

Requirements Matrix

Reg. #	Requirement	Description	Test to Verify
1	Talc on wire or not	We will need to determine whether talc powder is on the wire after the process occurs.	Sensor data or human observation
2	Confine talc application in the process	We will need to ensure that talcum powder isn't getting into the air and around the machine.	Human observation
3	Reduce talcum powder buildap	We will need to find a way to reduce the amount of buildup of talcum powder in the machine.	Sensor data or human observation
4	Evaluate how TDC talc machine is maintained	We will need to compare how TDC maintenance is done throughout the industry.	Data collection system
5	Maintenance	Talc machine should have maintenance done consistently	Checklist
6	Vacuum System	Find a vacuum system that will easily clean out the tale machine	Testing each vacuum system that is considered.
7	Training Program Develop a training program that explains maintenance process on talc machine.		Showcase training program to Prof. Leach to see if she is able to follow.
8	Testing Fixture	Determine whether all elements of maintenance plan, from training program to vacuum system, work well together.	Data collection

Failure Mode and Effect Analysis

		EM	E/	A - Falure Modes and	1 E	flactive Analysis			
Key Process Step	Potential Failure Mode	Potential Failure Effects	S II V	Potential Causes		Current Centrols	DET	RPN	Action Taken
				Automation / C	on	trois			
Designing a Program that complex and analyzes the data from each talc mathine	The incorrect information is being analyzed	False or incorrect information is being displayed other in favor or otherwise		There is an error in the program or data collection		The program has been in operation and working correctly		72	Close monitoring of the actual portomace compared to the information being analyzed
				Mechanical / C	on	trols			
Taic application to wire Taic machine	The Talc applied continues to be	The ship force of the wire is too high. The customer is unsatisfied with the		The monitoring of the tatic machine and or PM plan is inadequate The talc machines are damaged beyond	-	A stand for the testing strip force of the wire. The unmaintained machines are being compared to the			The estruded vice is being tested to make sure it is acceptable. The Talc application with be completed
operation	inadequate.	product.	-	repair		maintained machines	14	54	overhauled
				Genera					
Prevenative maintanance mlan	The plan is not followed	The talc machine begins to produce bad product		There is improper training or documentation	4	An in depth maintenance plan and supervised schedule.		192	The data from the Talc machine is closely monitored for any changes in performance.
Saflay	The inhelation of Talc	It is a safey hazard to the operator meating in possible injury	4	the maintenance has not been performed allowing excess Talls to build up.		The implemented PM plan	,		Cartain machines have been maintained in regard to the plan

Experimentation / Concepts Exploration									
	coperion	DC (Nordson							
M Process Improvement trengths: Minimal Cost Utilization of Current Resources Improved Machine Operation Improved Quality Performance	Process Automation Strengths: Alleviates User Error Seamless integration Weaknesses: High Cost Initial Learning Curve Large Footprint	Talc Applicator Replacement Strengths: Different Technology New Equipment Weaknesses: Heavy Cost Initial Learning Curve							
	Final Design								

P

St

Part Analysis and

Spec Generation

KNOWN BRA								
	 							Spycelulies with Server and remained the local spectra with read-Spectra Index hilling is not mattern, and he put and remained of the server
								Gelp form on having durate the approxim Adapt spectra to the data of phone spect assing the second phone during any form the first of the second phone form the first of the second phone
	 	and only 1						Operate operation proved spectra of Microsoftee, Microsoftee and emphasisper produces within available complexity

Process Inspection

Overall Statistical Analy

	Talc Delivery
	Process
vsis	Automation

Testing									
Automation Texting									
P	Test	Details	Outcome						
			The sensor was able to numerically						
	Sensor Detection	Spectrum Sensor Detects the presence	detect the presence of flour on the						
		of talc.	wire.						
		Preventative Maintenance Testi	ng						
	3-Monthly								
	Maintenance Plan	Evaluate control unit that receives	The talc machine performed better						
	Inspection	PM's against other units	than other units that were not PM'd						
	Reduced Vacuum	Trial an ash vacuum to reduce cloggin	Reduced emptying from 6 times to						
	Clogging	removal	once with the ash vacuum						
	Designated Talc	Try to eliminate time searching for talc	Time searching for a container						
	Container	container	eliminated						
	Quality Testing	Provide numberical strip force data to							
	Fixture	establish specs	Data Collection for strip force occuring						
		Implement talc application inspection							
	Inspection	for performance and machine setting	Performance and machines settings						
	Sustainment	gathering	being gathered and reported						
	Maintenance Plan	Create interactive training program to	Preventative Maintenance Training						
	Sustainment	increase PM process capability	Created						
	Maintenance Plan	Perform preventative maintenance	Inspection time gathered, and parts						

References

inspection on line 10EJ14

Perform full preventative

maintenance on 10EJ12

Constitut E-Trun - Constitut - Matter /Jacks constitut com/en/about as/constitut & trun (accessed Apr. 19, 2022)

- "Maridon Wire & Cable Equipment Traverse Drives Airwices Pavoffs Takeups Chalking Machines." https://www.maridon.com/ laccessed Apr. 19. 2022]
- Nordson ECC 702 Cable Coating Systems for Tairs and Superaborchent providers in Cable Coating | Nordson Adhesive Dispensing Systems https://www.nortion.com/an/dwisions/adhesive_dispansing.ustams/incourts/arcessories_kits.and.auxilian.epuinment/arc.202.cohie.coating.ostam /arcessed Apr. 19.2022)
- TDC, "Powder Applicator Technical Development Corporation Engineering & Manufacturing Firm," Aug. 24, 2021, https://technicaldevelopment.com/2021/08/24/powder-applicator

3

4

6

- accessed Apr. 19, 20221
- *ROLF SCHUCHT GMBH RSC powdering machine Next Generation,* Bolf Schlicht GmbH. https://schlicht.gmbh.de/en/rs-powdertech-2/ (accessed Apr. 19, 2022)
- *2017 Coperion K-Tron Product Specification 2410 Vacuum .pdf.* Gabriel Oviedo, Strin Force Test Future, 2022.

Expansion

laintenance

Expansion 2

"Al Torre - 2016 - WI 2775-TP7 Electrostatic Cable Coater Document.pdf."

Acknowledgements

We could not have done this without the superb outside help from Southwire and its many employees. Of which we want to give a special thanks to Jason Waak for his SME advice on the preventative maintenance process, Russ Johnson for his extensive data collection efforts and feedback on the drving units. Bob Miller on his advice and access to the PLC testing unit, and Todd Huff for his direction on the "rat holes" and "bridging" that were occurring in the machine. We would also like to thank our mentor in this project, Sarah Leach, for her guidance and consideration throughout the lifespan of this project.

ordered Full time frame established and remainder of pictures gathered for

maitnenance sustainment plan

Team 31