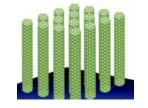
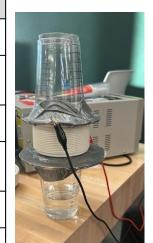
Team # 01 Water Desalination Using Carbon Nanotubes Team # 01

Team Members: Gabriel Muzio, Eric Martinez, Alexander Preal, Carson Peterson, Brendan Nonamaker Mentors: Jim Condron, Frederick Berry, Tillmann Kubis, Dipak Narula


Customer Background

As fresh water scarcity worsens globally there is a pressing need for affordable, scalable, cost effective solutions. Current technologies are costly and limited in reach. Using carbon nanotubes can revolutionize current filtration issues.

Problem Statement


The goal of this project is to develop an efficient, economical, and sustainable carbon nanotube water desalination filter meeting Purdue Research Foundation specs for salt removal and low-energy operation

Experimentation and Concepts

After concluding such a method was to difficult we began to utilize applying voltage to metal meshes such that the voltage would be parallel to the flow of water to generate an EMF that repelled the salt.

Final Design

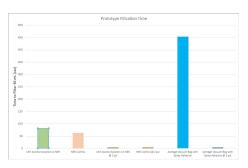
The final design we built utilized a drip filtration method of slowly letting the water drip through the filter under no pressure while being subjected to a constant low voltage parallel to the flow of water, and thus creating an EMF that repelled the charged salt ions.

The initial designs were based

nanotubes with diameters

large enough for water but

smaller than salt and forcing


around using aligned

water through

Buckypaper (Compressed CNTs)

This however did not show us favorable results and instead helped show us that the use of buckypaper under low pressure conditions was not porous enough to serve as a filtration medium.

Testing

Requirements

Req #	DESIGN REQUIREMENTS	METRICS
1	Use of vertically oriented carbon nanotubes	Water flow increase from alignment
2	Repeatable process for aligning and applying CNTs	Measurement of hole diameter and filter size
3	Conductive element inside of the filter	Resistance is within target Range
4	Medium needs to suspend CNTs in space	Increased flow from alignment does not decrease
5	Must desalinate water by a measurable amount	Measure salt content in water
6	Eliminate bacteria and other impurities	Measure the purity of water