Team 2

Black Hawk Seals

Seal Test Bench

Purdue Tech Expo Fall 2023

Purdue Students: Aaron Yeung, Nathan Zorich, Micah Gutierrez, Nhan Truong Client Mentors: Bill Walls, Renee Earley Purdue Mentor: Ralph Munguia Purdue Professor: Dr. Fred Berry

Experimentation /

PURDUE TECHNIC

Customer Background

Black Hawk Seals (BHS) is an innovative supplier of high-quality, economically This bench is competitor seal companies, facilitating knowledge of seal design designed to gather data on head seals and backup seals to compare BHS products to other /performance. Depending on the material composition and seal type, seal performance changes. For this project, BHS provided seven seal types with various material compositions, and established Black Hawk Seal test parameters to evaluate them

Problem Statement / Scope of Work

Black Hawk Seals is in need of data on static seal performance and a system that will evaluate seals at various parameters to test and collect that data. This will allow BHS to alter seals' design and material composition to develop superior products.

Implement a system to evaluate baseline performance of various static seals under captured data from tests the following parameters: Temperature, Pressure, Number of Cycles. Analyze ; Compare measured seal extrusion and deformation, and provide feedback of findings to BHS

Requirements Matrix

1.22	DESIGN REQUIREMENTS	DESIGN TARGETS	VALIDATION						
	RATIONALE								
	Collect data from the test at 3000 psi	Evaluate the performance during and after then test	Static Impulse Testing						
	Testing Procedure provided by Company Client								
	Collect data at 5000 psi	Evaluate the performance during and after then test	Static Impulse Testing						
	Testing Procedure provided by Company Client								
	Ambient temperature of 210°F ± 5°F	Evaluate the performance during and after then test at this range of temperature and at 2000 psi	Static Impulse Testing						
	Testing Procedure provided by Company Client								
	Ambient temperature of 250°F ± 5°F	Evaluate the performance during and after then test at this range of temperature and at \$000 psi	Static Impulse Testing						
	Testing Procedure provided by Company Client								
	4s cycle time (2s on and 2s off)	Duration of the impulse of the hydraulic fluid	Using PLC through LabVIEW						
	Testing Procedure provided by Company Client								
	10,000 cycle minimum per head seal and backup	Duration of entire test to be done on the head seals/back 10	Program into PLC through LabVIEW						
	Testing Procedure provided by Company Client								
	Oil type	Document the Indraulic fluid that was used	N/A						
	Measurements before testing	Get measurements on seals, including identification(supplier), cross section, height, and weight	Use of various measurement equipment						
	Testing Reporting another by Company Chart								
	Measurements after	Get measurements, including the identification, cross	Use of various measurement equipment						
	Testing Procedure provided by Company Clarit								
	Documentation	Photograph the tested seals, then slice a small cross section. Measure the non-contact extrusion. Complete a test report for all the seals/backup for all 8 suppliers.	Capture measurements taken and record the data to finalize a conclusion.						

O-ring Test Fixture Houses the O-rings in a steel consisting of two The seals are installed end caps and one main body. and cap.

PLC wiring

LabVIEW Graphical environment used to visually program. LabVIEW takes in the necessary sensor data while simultaneously controlling the pump, as well as the DCV cycling.

Final Design

Electrical Wiring

Heating Band Heating bands are placed on either side of each fixture and powered by a 240V outlet. The whole fixture will reach 250°F in about 30 minutes.

Failure Mode and Effect Analysis

Item Function	Requirements	Potential Failure Mode	Potential Effect(s) of Failure	Severty	Classification	Potential Causes(s) of Failure	ID LIALING O
Bench / Provides	Pressurize	Pump and motor	No ability to pressurize fluid	8	Coupling metal not able to withstand shear stress	Too weak of coupling material	3
ises for our static testing	Cany pressurized fluid from pump to testing housing	Hoses burst from pressure	No ability to transfer pressurice fluid	9	Hose construction not able to withstand 5000 psi	Hoses not made to stated specifications	1
	Measure Pressure	Pressure gagues stop working	No ability to measure pressure	6	Gagues loses fundion	Overuse or damage from switching out test housings	1
	Seal threads of fittings with threads of housing	Fluid Leaks	Pressure drops	4	fitting leaks	to much thread tape or to little or broken joint C-ring	5
	monitor system	broken control valve	inability to use one or both test futures	3	loss of DCV	friction, inproper installment, over pressure	2
	monitor system	broken pressure fransducer	inability to collect data from that point	3	loss of pressure transducer	over pressure, old warnout	2
	make sure intercooler is set up and working	burnt oil	hazardous fumea	9	bad fluid	too much friction causing heat to build up, intercooler not hooked up	2

LabVIEW Front Panel

Block Diagram

Backup Seall after

10,000-cycle test under microscope

