Team #25

Laboratory Application: Voice Transcription with a Wearable

Team #25

Customer Background

An Indiana pharmaceutical company has remained a significant player in the industry by using its innovative capabilities to build their success. Currently, their <u>laboratory</u> <u>scientists utilize RealWear headset devices</u> for voice transcription, image and video capturing, and data uploading. This allows them to <u>view their research and access recorded</u> <u>experiments to analyze at a later time.</u>

Problem / Scope of Work

Scientists are looking for resources to optimize their data collecting methods. After implementing the RealWear HMT-1 devices they discovered roadblocks such as background noise, unsuccessful cloud transferral, and transcription errors.

This company wants to seamlessly capture their in-lab data using this wearable in real-time. This project aimed to test multiple softwares to gather empirical data to demonstrate which software is the most accurate given the environment.

Requirements

#	Criteria Description		Test Type (see Testing section)	Rationale		
1	Noise canceling	Software must filter outside noise	Demonstration	Can still perform optimally with background noise		
2	Platform capability	Integrates with other softwares and tools	Analysis / Demonstration	Users should not need additional training for software		
3	Sustainability	Products must be approved by client	Analysis	Product must meet client's requirements regarding sustainability		
4	Adaptability	Usage within multiple environments	Analysis within scenarios	Parameters should be adjustable		

Team Members: Abraham Mes, Austin Davis, Natalia Zeoli, Rachel Fisher, Phillip Bein, Aaron Gonzalez, Robert Shields, Michael Dill Mentors: Milton Aguirre, Joseph Fraseur

Experimentation / Concepts

Software	Strengths	Weakness			
ոսվվես WRITE սիվիստ BY VOICE	 Application responsiveness Ease of use	 High percentage of missed words High percentage of incorrect words Transcription interruption 			
verbit ^v	• Designed for commercial usage	• Input inaccuracy			
Oll•1 Otter.ai	Software response timeTranscription accuracy	 Application responsiveness Ease of use			
•••	accuracy	• Ease of use			

Testing

Tests were conducted in laboratory and quiet environments. Each test was scored out of 5 possible points, as shown:

Application Useability Testing							
Step	Test	Details	Average Score: Otter.ai	Average Score: Write by Voice			
1	l Layout How intuitive it is for u understandability		3.57	2.71			
2	Starting/Stopping	How often users repeated oneself once recording began	3.57	4.00			
3	Navigation	How many steps it takes to generate transcription	4.00	2.71			
4	Software response time	How responsive software is in seconds	4.29	4.00			
5	Transcription interruption	How many interruptions there are per minute	5.00	2.43			
The su results compa	m for each software , Otter.ai consistently red to Write by Voic	is highlighted in gray. Based on our / had higher scores for each test e.	20.43	15.85			

PURDUE POLYTECHNIC

FMEA

FMEA - Failure Modes and Effective Analysis									
Process Step/Input	Potential Failure Mode	Potential Failure Effects	SE V	Potential Causes	0 C C	Current Process Controls	D E T	RPN	Actions Taken
HMT-1 Device User Experience	User has issues operating the device	User is unable to effectively operate the device to its fullest potential	5	User is not trained in operating the HMT-1	2	RealWear's website can be referenced for detailed instructions	5	10	Reference RealWear's website and schedule a demo
Transcription Software	Software is not functional with the HMT-1	User is unable to utilize the transcription software	6	Software is not available as an apk or its layout is not optimized with the device	5	Android apps are compatible with the HMT-1 but not all are optimized	2	60	Test software with HMT-1 for functionality
Software Practicality	Software is not practial for making creating transcriptions in a productive manner	User is unable to produce transcriptions in a productive manner	6	Software requires too many steps to produce a transcription	5	Transcription softwares have their own number of steps needed to produce a transcription	2	60	Document the number of steps taken to create a transcription

Final Results

Diffchecker

Comparing software % of errors were calculated by taking the average of errors from three parameters: <u>incorrect input</u>, <u>missing words</u>, and <u>extra</u> <u>words</u> for all three softwares. The average of these were then summed together to create an overall % of errors for each given software.