Team 32

Engine Dyno

Purdue Polytechnic – South Bend

Engine Dyno

Purdue Students: Jonathan Adams, Michael Rhoades, Becker Reardon, Saul Garcia, Alec Barson Purdue Mentors / Customers: Dr. Megan Prygoski Purdue Professors: Dr. Fred Berry & Dr. Sarah Leach

PURDUE OIYTECHNIC

Team 32

Customer Background

Dr. Prygoski, a professor at Purdue Polytechnic's South Bend campus, teaches Mechanical Engineering Technology. With her M.S. and Ph.D in Mechanical Engineering from the University of Notre Dame she teaches Heat and Power and Applied Thermodynamics, two core MET courses which include lab exercises. The intention of the engine dyno is to be used in these labs. This dyno will enhance students' ability to conceptualize energy transfer and efficiency.

Problem Statement / Scope of Work

A previous capstone team collected components and designed a basic structure. The Dyno will be used in MET thermodynamics labs. Our customer asked for a reliable and long-lasting piece of equipment that will use an internal combustion engine to

power alternators. The system load is created by supplying current to resistant heating elements. The measured rise in temperature is displayed in real time. Also, the client asked that all the temperature readings be within 10% of each other; to achieve this the water will be circulated using a water pump. The final objective was making the engine dyno a show piece to present to student interested in attending

Purdue South Bend

Requirements Matrix

	Requirement	Description	Test to Verify	
1	Engine Dyno Test Run	Put Engine Dyno back together and make sure parts are tight before test run.	Put gasoline into system and start the engine.	
2	Temperature of Water	Measure heat output from engine to water. Water temperature should be about the same.	The Arduino reads the data sent from the sensors.	
3	Sync Temperature Sensor Readings	Each sensor reads within 10% of each other	Evenly distribute power and display data.	
4	Display	Have LCD screen display four outputs for temperature.	Arduino code interprets data and displays temperature on the LCD screen.	
5	Fluid Flow Sensor	Have a fluid sensor to measure intake/amount of water going into the system. Find out how much fluid has flowed through the system.	The feedback from the flow sensor is sent to the Arduino and displayed on the LCD screen.	
6	Safety Protocol	Place safety measures to ensure operator and bystanders can be safe when engine dyno is on.	The emergency stop cesses the system to come to complete stop.	

Experimentation / **Concepts Exploration**

Pully System

Strenaths: Powers heating elements Capable of powering additional parts Weaknesses:

If installed wrong, the * belt could break or slide off

Battery Box

Strengths: Sturdy Easily removable Ledge to place and slide battery in.

Bolts placed in groves used to stop

Weaknesses: battery from sliding Slightly flexible

Strenaths:

Visible

spot

Ease of use

Final Design

Protective Equipment (Metal fence,

Polycarbonate

Stop

sheets, and an E-

Flow Meter and LCD Screen Temperature Sensors

Control Panel strengths/

weakness)

Components are in one

Water Pump / Flow Sensor

Failure Mode and Effect Analysis (FMEA)

		FME	A – Failure	Modes and Eff	ective Anal	vsis			
Function	Potential failure mode	Potential failure effects	SEV	Potential Causes	000	Current controls	DET	RPN	Actions Takes
			Me	chanical Compone	nts				
Timing belt	Belt slips off	Critical failure and injuries	10	Improper alignment, bed beit, no beit guards	10	Realignment	1	2	install pulley guards to prevent slippage
Alternator pulley	Loose pulley tension, slip	Loss of energy from belt to alternator	5	incorrect installation of bully right now	1	instal pulling up with torque wrench	2	4	Add an additional tensioner
Waterpump	Pump burns put	Waterwon't circulate	1	Pump ran without water	2	Pump is placed below waterline	1	1	A switch to tun the pump on or off
			E	ectrical Componen	ts				
Heating element	Heating elements become open	Data will be off compared to previous test	1	Corrosion, constant heating and cooling cycle, low water level	7	None	9	8	Bench and field test and water level line
Wiring	Overheat and melt	Fire, engine dyno destroyed, need new alternators	9	So why are not sized properly, load shorts out	2	calculate wire size	2	1	Install PVC conduit for wire
General									
Safety	Clothing getting caught in machinery	Loss of life or lens for operators	2	Loose clothing or jewelry and long hair	1	Shut down system nothing	2	4	Enclosed engine dyno with wired mesh

Testing

		General Automation & Mechanica	l Test		
Step	Test	Details	Outcome		
1	Cart Usability	Ensure the cart is lightweight, portable, and fits through the door	Cart fit through the door-way and was lightweight		
2	Engine	Ensure the engine runs and fits through the door	The engine ran but the belt does vibrate		
3	Heating System	Ensure the capability to heat the water	The heating elements do have the capacity to heat the water		
4	Sensor/ Water Pump	Ensure the sensors and pump work as intended before installing	All parts worked as intented		
		Production Testing			
5	Starting the Motor	Make sure the engine can easily turn off and on	Test was a failure because e-stop has to b help in to start the engine		
6	Water Temperature Increases	Ensure the engine provides whough power to heat the water	The water temperature increased but ver slowly		
7	LCD	Ensure the temperature and flow rate are displayed on the LCD	Both the temperature and flow-rate were displayed on the LCD		

Engine / Chassis

