Sensor Placement Analyzation

<u>Purdue Students</u>: Kaelen Preasha, Kevin Prestipino, Cole Nolting, Emmanuel Ndegwa, Kyle Ondrovic

<u>Purdue Mentors / Customers:</u> Richard Voyles, Oregon Tool <u>Purdue Professors:</u> Dr. Fred Berry & Dr. James Condron

Team 7

Customer Background

 Established in the early 1940s Oregon Tools is a renowned company that has been a pioneer in providing high-quality tools and equipment for various industries, primarily focusing on outdoor power equipment and cutting solutions.

Problem Statement / Scope of Work

 We aim to improve chainsaw safety, maintenance, and useability through the experimentation of optimal sensory locations for relaying feedback to the manufacturer.

Requirements Matrix

Design Requirements

- Characterization of data
- Ability to measure vibration
- Ability to measure sound
- Is able to be implemented within the chainsaw in a minimally invasive manner
- Monitors the characteristics of chainsaw performance

Experimentation / Concepts Exploration

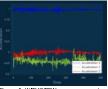

Figure 2-Location 2 for sensor

Figure 4- CAD Model 2nd view

Final Design

 We opted for the second test location for sensor placement in our final design, as it yielded superior results based on the collected data.

Figure 7-Location 3 for sensor

Figure 6-MATLAB feature graphs from Location 2

Failure Mode and Effect Analysis

Item: Model: Core Team: Process Punction					PAILURE MODE AND EFFECTS ANALYSIS				
	Inteligent Maintenance Electric Chainsaw Kyle Chdrovic, Kaelen Praesha, Kevin Prestipino, Cole No.			Responsibility Prepared by Sing, Emmanuel Nilegwa		Kyle Ondrovic Kyle Ondrovic			
	Potential Fallure Mode	Potential Effect(s) of Failure	8	Potential Cause(s)/ Mechanism(s) of Patters	0 4 6 3 4	Current Process Controls	D	2.1.2	
Microphone sensor detection	False Positive	The chainsaw does not power on	2	microphone is peer condition. Claffication is innaccurate	2	Verify the validity of sensor through testing	1	•	
Microphone sensor Setestion	False Negative	The chairsew continues to run and breaks	*	microphone is poor condition. Claffication is Inneccurate	í	Cross Reference with of sensors data	*	**	
Microphone sensor detection	Innacturate Microphone Data	The chainsaw safety processions fall	5	microphone is poor condition. Claffication is Inneccurate	3	Cross Reference with of sensors data	,	13	
A to D Unit Fower	No power sensor power	The chainsaw does not power on. The chainsaw falls.	*	Poor condition of A to D unit	×	Securety wire to chainsaw and sensors. Insulate from outside conditions	14	24	
Microphone sensor detection	Destruction of Microphone	The chainsaw does not power on. The chainsaw falls.	2	Environmental conditions damage microphone Chainsaw damages microphone	2	Fasten securely Inside chainsaw.	2	o	
Current monitoring (Current Clamps)	Destruction of Current Clemps	The chainsew does not power on. The chainsaw faits.	2	Environmental conditions damage Current clamps. Chainsew		Paster securely incide chainsaw insulate from		12	

Testing

Testing Procedure

- Objective/Deliverables
- Gather Data
- Classification, Characterization and Analysis
- Determine the best locations for sensor placement on chainsaw
- Mounting the Bluetooth sensor to three specified locations on the chainsaw
- Set board on saw-horse
- Perform 5 cuts halfway while collecting data on each cut
- Label files by cut, location, and wood type
- Repeat with other 2 wood types
- Final Design: Location 2

