Sensor Placement Analyzation <u>Purdue Students</u>: Kaelen Preasha, Kevin Prestipino, Cole Nolting, Emmanuel Ndegwa, Kyle Ondrovic <u>Purdue Mentors / Customers:</u> Richard Voyles, Oregon Tool <u>Purdue Professors:</u> Dr. Fred Berry & Dr. James Condron Team 7 ## **Customer Background** Established in the early 1940s Oregon Tools is a renowned company that has been a pioneer in providing high-quality tools and equipment for various industries, primarily focusing on outdoor power equipment and cutting solutions. # Problem Statement / Scope of Work We aim to improve chainsaw safety, maintenance, and useability through the experimentation of optimal sensory locations for relaying feedback to the manufacturer. ## **Requirements Matrix** #### **Design Requirements** - Characterization of data - Ability to measure vibration - Ability to measure sound - Is able to be implemented within the chainsaw in a minimally invasive manner - Monitors the characteristics of chainsaw performance # Experimentation / Concepts Exploration Figure 2-Location 2 for sensor Figure 4- CAD Model 2nd view ## **Final Design** We opted for the second test location for sensor placement in our final design, as it yielded superior results based on the collected data. Figure 7-Location 3 for sensor Figure 6-MATLAB feature graphs from Location 2 # Failure Mode and Effect Analysis | Item:
Model:
Core Team:
Process Punction | | | | | PAILURE MODE AND EFFECTS ANALYSIS | | | | | |---|--|---|---|--|-----------------------------------|---|----|-------|--| | | Inteligent Maintenance
Electric Chainsaw
Kyle Chdrovic, Kaelen Praesha, Kevin Prestipino, Cole No. | | | Responsibility Prepared by Sing, Emmanuel Nilegwa | | Kyle Ondrovic
Kyle Ondrovic | | | | | | Potential Fallure
Mode | Potential Effect(s) of Failure | 8 | Potential
Cause(s)/
Mechanism(s) of
Patters | 0 4 6 3 4 | Current
Process
Controls | D | 2.1.2 | | | Microphone sensor
detection | False Positive | The chainsaw does not power on | 2 | microphone is
peer condition.
Claffication is
innaccurate | 2 | Verify the validity of sensor through testing | 1 | • | | | Microphone sensor
Setestion | False Negative | The chairsew continues to run and breaks | * | microphone is
poor condition.
Claffication is
Inneccurate | í | Cross Reference
with of sensors data | * | ** | | | Microphone sensor
detection | Innacturate
Microphone Data | The chainsaw safety processions fall | 5 | microphone is
poor condition.
Claffication is
Inneccurate | 3 | Cross Reference
with of sensors data | , | 13 | | | A to D Unit Fower | No power sensor
power | The chainsaw does not power on. The chainsaw falls. | * | Poor condition of
A to D unit | × | Securety wire to
chainsaw and
sensors. Insulate
from outside
conditions | 14 | 24 | | | Microphone sensor
detection | Destruction of
Microphone | The chainsaw does not power on. The chainsaw falls. | 2 | Environmental
conditions
damage
microphone
Chainsaw
damages
microphone | 2 | Fasten securely
Inside chainsaw. | 2 | o | | | Current monitoring
(Current Clamps) | Destruction of
Current Clemps | The chainsew does not power on. The chainsaw faits. | 2 | Environmental
conditions
damage Current
clamps.
Chainsew | | Paster securely
incide chainsaw
insulate from | | 12 | | #### **Testing** #### Testing Procedure - Objective/Deliverables - Gather Data - Classification, Characterization and Analysis - Determine the best locations for sensor placement on chainsaw - Mounting the Bluetooth sensor to three specified locations on the chainsaw - Set board on saw-horse - Perform 5 cuts halfway while collecting data on each cut - Label files by cut, location, and wood type - Repeat with other 2 wood types - Final Design: Location 2