Team 16 polytechnic.purdue.edu/facilities/lobe ### **Customer Background** Dr. Robert Nawrocki - Primary research in neuromorphic systems and flexible organic electronics - Project will be used as a base for future research using organic components ## Problem Statement / Scope of Work Implementation DESIGN - Spiking Neural Network (SNN) - FPGA (Verilog & VHDL code) - Analog Grayscale Sensors - Advantages of SNN Usage - Readily available hardware - Low power - Adaptable #### Requirements DESIGN VALIDATION | # | REQUIREMENTS | TARGETS | | | | | | |---|--|---|--|--|--|--|--| | | RATIONALE | | | | | | | | 1 | Neural Network must be
Hardware Implemented with
low power requirements. | Runs off of USB power
source (5V 0.5A [15]) | Implement on FPGA
powered by USB [12] | | | | | | | This system must be portable as it will be used to control a small vehicle with limited battery power. The current control method of the vehicle uses an FPGA and to keep the design simple, the initial SNN will be implemented on a similar device [12]. | | | | | | | | 2 | Neural Network must have an output react to input changes similar to biological reactions. | Outputs spike with consecutive changes in inputs. | System maneuvers
through curves on testing
tracks. | | | | | | | The more biological-like process found in a Spiking Neural Network allows the system to be more adaptable and require less power [9]. | | | | | | | | 3 | Initial AHDL based system follows track completely. | Vehicle completes track in both directions. | Run autonomous vehicle on track. | | | | | | | | | | | | | | Training system should be able to correctly run the full course [14] ### Autonomous Neuromorphic Car Team Members: Nicholas Bartoch, Alex Pippin, Megan Daniel, Phillip Salowe, Ronell Chakola Mentors/Customers: Dr. Robert Nawrocki, Dr. Yi Yang Professors: Dr. Fred Berry # **Experimentation and Concepts** | | | SNN Ou | tput Frequencies | at all input cases | (W for whitte B fe | or black) | | | |-----------------------|---------|----------|------------------|--------------------|--------------------|-----------|---------|-------| | | WWWB | WWBB | WWBW | WBBW | WBWW | BBWW | BWWW | | | 1 - initial
system | 1.00 k | 7.315 | 16.129 | 28.571 | 12.484 | 244.1 | 1.44 k | Right | | | 1.44 k | 204.3 | 12.484 | 28.249 | 15.82 | 7.013 | 1.00 k | Left | | 2 - Threshold | 1.00 k | 7.315 | 16.129 | 28.571 | 12.484 | 244.1 | 1.44 k | Right | | Measurement | 1.44 k | 203.9 | 12.484 | 28.249 | 15.823 | 7.0126 | 1.00 k | Left | | 3 - Hidden | 1.00 k | 7.315 | 16.133 | 28.58 | 14.305 | 244 | 1.42 k | Right | | Neurons | 1.42 k | 204.3 | 12.485 | 28.26 | 19.458 | 7.013 | 1.00 k | Left | | 4 - Forward and | 2.001 k | 203.9 | 12.485 | 28.249 | 15.823 | 7.0126 | 1.00 k | Right | | Brake cases | 1.999 k | 7.315 | 16.129 | 28.571 | 12.485 | 244.1 | 1.427 k | Left | | 5 - | 2.001 k | 1.1113 k | 12.483 | 28.24 | 15.823 | 7.0126 | 1.00 k | Right | | Simplification | 1.999 k | 833.3 | 16.129 | 28.57 | 12.483 | 244.1 | 1.429 k | Left | A threshold was given when determining white and black lines on the track ### **Final Design** #### **FMEA** | PLANNING ANI | PREPARATI | ON (STEP 1) | | | | | |-------------------------|-----------------------------------|--|---|---|---|--| | Company Name | | Purdue University | | | | | | Engineering Loca | | V | DFMEA Start Date DFMEA Revision Date | | | | | Customer Name | | Robert Nawrocki | | | | | | Model Year(s)/P | | | 2022 | Cross Functional Tear | | | | STRUCTU | RE ANALYSIS | (STEP 2) | FUNCTION ANALYSIS (STEP 3) | | | | | 1. Next Higher
Level | 2. Focus
Element | 3. Next Lower
Level
or
Characteristic | Next Higher Level Function and Requirement | 2. Focus Element
Function and
Requirement | 3. Next Lower Level
Function and
Requirement or
Characteristic | | | Power Supply | 12V battery | Battery
Mounts | Supply power to the components of the car | Powers the motors to
drive the car | battery mounts
allow for
maneuverability | | | Motor Control | H-Bridge
Motor Driver
Board | Motor
controller
plate | Take inputs from the
DE10 to control the
motors | Control the H-bridge
motors | Electronic Mount | | | Board Control | DE-10 Lite
Board | FPGA Board
GPIO Ports | | Senses the track in
order to orient the
car correctly | sensors mounted
under car to read
the track | | ### **Testing** | | | Track Testing | | |------------------|---|-----------------------------------|---| | Turn Type | Test | Details | Outcome | | Straight 90 Deg | Place down 2 straight
continuous tape paths
for the car to follow | begin the test, plug the SD card | The outcome
should produce the
same frequency for
the left and right
output | | | Place down 2 paths
or tape in roughly 5-6
segments to create a
curve | if has completed the desired nath | | [9] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou, "Low-Power Neuromorphic Hardware for Signal Processing Applications: A Review of Architectural and System-Level Design Approaches," IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 97–110, Nov. 2019. doi: 10.1109/MSP.2019.2933719. [12] T. Technologies, "Terasic - All FPGA Boards - MAX 10 - DE10-Lite Board." https://www.terasic.com.tw/egi-bin/page/archive.pl?Language=English&CategoryNo=218&No=1012k@Artino=2#heading (accessed Sep. 12, 2022). [14] M. Vanmali, M. Last, and A. Kandel, "Using a neural network in the software testing process," Int. J. Intell. Syst., vol. 17, pp. 45–62, Jan. 2002, doi: 10.1002/int.1002. [15] "What are the Maximum Power Output and Data Transfer Rates for the USB Standards?" https://resources.pcb.cadence.com/blog/2020-what-are-the-maximum-power-output-and-data-transfer-rates-for-the-usb-standards (accessed Sep. 12, 2022).