Team 16



polytechnic.purdue.edu/facilities/lobe

### **Customer Background**

Dr. Robert Nawrocki

- Primary research in neuromorphic systems and flexible organic electronics
- Project will be used as a base for future research using organic components

## Problem Statement / Scope of Work

Implementation

DESIGN

- Spiking Neural Network (SNN)
- FPGA (Verilog & VHDL code)
- Analog Grayscale Sensors
- Advantages of SNN Usage
  - Readily available hardware
  - Low power
  - Adaptable

#### Requirements

DESIGN

VALIDATION

| # | REQUIREMENTS                                                                                                                                                                                                                                               | TARGETS                                           |                                                          |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--|--|--|--|
|   | RATIONALE                                                                                                                                                                                                                                                  |                                                   |                                                          |  |  |  |  |
| 1 | Neural Network must be<br>Hardware Implemented with<br>low power requirements.                                                                                                                                                                             | Runs off of USB power<br>source (5V 0.5A [15])    | Implement on FPGA<br>powered by USB [12]                 |  |  |  |  |
|   | This system must be portable as it will be used to control a small vehicle with limited battery power. The current control method of the vehicle uses an FPGA and to keep the design simple, the initial SNN will be implemented on a similar device [12]. |                                                   |                                                          |  |  |  |  |
| 2 | Neural Network must have an output react to input changes similar to biological reactions.                                                                                                                                                                 | Outputs spike with consecutive changes in inputs. | System maneuvers<br>through curves on testing<br>tracks. |  |  |  |  |
|   | The more biological-like process found in a Spiking Neural Network allows the system to be more adaptable and require less power [9].                                                                                                                      |                                                   |                                                          |  |  |  |  |
| 3 | Initial AHDL based system follows track completely.                                                                                                                                                                                                        | Vehicle completes track in both directions.       | Run autonomous vehicle on track.                         |  |  |  |  |
|   |                                                                                                                                                                                                                                                            |                                                   |                                                          |  |  |  |  |

Training system should be able to correctly run the full course [14]

### Autonomous Neuromorphic Car

Team Members: Nicholas Bartoch, Alex Pippin, Megan Daniel, Phillip Salowe, Ronell Chakola Mentors/Customers: Dr. Robert Nawrocki, Dr. Yi Yang Professors: Dr. Fred Berry

# **Experimentation and Concepts**

|                       |         | SNN Ou   | tput Frequencies | at all input cases | (W for whitte B fe | or black) |         |       |
|-----------------------|---------|----------|------------------|--------------------|--------------------|-----------|---------|-------|
|                       | WWWB    | WWBB     | WWBW             | WBBW               | WBWW               | BBWW      | BWWW    |       |
| 1 - initial<br>system | 1.00 k  | 7.315    | 16.129           | 28.571             | 12.484             | 244.1     | 1.44 k  | Right |
|                       | 1.44 k  | 204.3    | 12.484           | 28.249             | 15.82              | 7.013     | 1.00 k  | Left  |
| 2 - Threshold         | 1.00 k  | 7.315    | 16.129           | 28.571             | 12.484             | 244.1     | 1.44 k  | Right |
| Measurement           | 1.44 k  | 203.9    | 12.484           | 28.249             | 15.823             | 7.0126    | 1.00 k  | Left  |
| 3 - Hidden            | 1.00 k  | 7.315    | 16.133           | 28.58              | 14.305             | 244       | 1.42 k  | Right |
| Neurons               | 1.42 k  | 204.3    | 12.485           | 28.26              | 19.458             | 7.013     | 1.00 k  | Left  |
| 4 - Forward and       | 2.001 k | 203.9    | 12.485           | 28.249             | 15.823             | 7.0126    | 1.00 k  | Right |
| Brake cases           | 1.999 k | 7.315    | 16.129           | 28.571             | 12.485             | 244.1     | 1.427 k | Left  |
| 5 -                   | 2.001 k | 1.1113 k | 12.483           | 28.24              | 15.823             | 7.0126    | 1.00 k  | Right |
| Simplification        | 1.999 k | 833.3    | 16.129           | 28.57              | 12.483             | 244.1     | 1.429 k | Left  |

A threshold was given when determining white and black lines on the track

### **Final Design**





#### **FMEA**

| PLANNING ANI            | PREPARATI                         | ON (STEP 1)                                    |                                                       |                                                             |                                                                         |  |
|-------------------------|-----------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|--|
| <b>Company Name</b>     |                                   | Purdue University                              |                                                       |                                                             |                                                                         |  |
| <b>Engineering Loca</b> |                                   | V                                              | DFMEA Start Date DFMEA Revision Date                  |                                                             |                                                                         |  |
| <b>Customer Name</b>    |                                   | Robert Nawrocki                                |                                                       |                                                             |                                                                         |  |
| Model Year(s)/P         |                                   |                                                | 2022                                                  | Cross Functional Tear                                       |                                                                         |  |
| STRUCTU                 | RE ANALYSIS                       | (STEP 2)                                       | FUNCTION ANALYSIS (STEP 3)                            |                                                             |                                                                         |  |
| 1. Next Higher<br>Level | 2. Focus<br>Element               | 3. Next Lower<br>Level<br>or<br>Characteristic | Next Higher Level     Function and     Requirement    | 2. Focus Element<br>Function and<br>Requirement             | 3. Next Lower Level<br>Function and<br>Requirement or<br>Characteristic |  |
| Power Supply            | 12V battery                       | Battery<br>Mounts                              | Supply power to the components of the car             | Powers the motors to<br>drive the car                       | battery mounts<br>allow for<br>maneuverability                          |  |
| Motor Control           | H-Bridge<br>Motor Driver<br>Board | Motor<br>controller<br>plate                   | Take inputs from the<br>DE10 to control the<br>motors | Control the H-bridge<br>motors                              | Electronic Mount                                                        |  |
| Board Control           | DE-10 Lite<br>Board               | FPGA Board<br>GPIO Ports                       |                                                       | Senses the track in<br>order to orient the<br>car correctly | sensors mounted<br>under car to read<br>the track                       |  |

### **Testing**

|                  |                                                                               | Track Testing                     |                                                                                         |
|------------------|-------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------|
| Turn Type        | Test                                                                          | Details                           | Outcome                                                                                 |
| Straight  90 Deg | Place down 2 straight<br>continuous tape paths<br>for the car to follow       | begin the test, plug the SD card  | The outcome<br>should produce the<br>same frequency for<br>the left and right<br>output |
|                  | Place down 2 paths<br>or tape in roughly 5-6<br>segments to create a<br>curve | if has completed the desired nath |                                                                                         |

[9] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou, "Low-Power Neuromorphic Hardware for Signal Processing Applications: A Review of Architectural and System-Level Design Approaches," IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 97–110, Nov. 2019. doi: 10.1109/MSP.2019.2933719.

[12] T. Technologies, "Terasic - All FPGA Boards - MAX 10 - DE10-Lite Board." https://www.terasic.com.tw/egi-bin/page/archive.pl?Language=English&CategoryNo=218&No=1012k@Artino=2#heading (accessed Sep. 12, 2022).

[14] M. Vanmali, M. Last, and A. Kandel, "Using a neural network in the software testing process," Int. J. Intell. Syst., vol. 17, pp. 45–62, Jan. 2002, doi: 10.1002/int.1002.

[15] "What are the Maximum Power Output and Data Transfer Rates for the USB Standards?" https://resources.pcb.cadence.com/blog/2020-what-are-the-maximum-power-output-and-data-transfer-rates-for-the-usb-standards (accessed Sep. 12, 2022).