Measuring the Impact of PLM Phases I-III

Lisa Ncube, Ph.D.

The development of a metrics tool that organizations can use to assess the impact of PLM

Project Objectives

Provide a Access and Analysis
Provide Roll up Capability of Metrics
Provide Analysis models across the Data/ Information
The ability to bring Metrics alive.
Powerful Client Layer to Access Data

Provide an Application Model That Promotes:
Hierarchical modeling of Manufacturing
Provides a Consistent PLM Metrics Model
Provides the ability to build Standards of Metrics and Approaches to Apply

Provide a System Platform on Which Metrics can be managed, and sustained. Integrated with Manufacturing.

Product Lifecycle Management Metrics

Phase 1: Survey Instrument Development

Phase 2: Exploratory Factor Analysis & Metrics Identification

- Input Metrics
- Output Metrics:
- Outcome Metrics
- Impact metrics

PLM Logic: Elements of the Model

Inputs Metrics: measure the quality of

- Tactical investment in the existing business (balance optimization)
- Strategic investment in new businesses (innovation) (Simmons 2000).
- Process Metrics: measure the quality of the company's PLM activities
 - Plan
 - Design
 - Build
 - Support

PLM Logic: Elements of the Model

- Outputs Metrics: are the product or service delivery/implementation targets for PLM:
 - Completion Performance,
 - Resource Optimization,
 - Change Control & Change Capacity,
 - Configuration Management Metrics, etc.
- Outcomes are the changes and/or benefits resulting from PLM activities and outputs:
 - waste reduction,
 - innovation and new products,
 - continuous improvement and
 - sustainable green manufacturing.
- Impact is the return on investment in strategic innovation of the PLM project.

How of PLM Program				Results from Program			
Resources/ Inputs (What we invest)	Activities /Processes (What we do)	Outputs	Customers (Who we reach)	Short-term outcome/ Objectives (Change in: knowledge, skills, attitudes, motivation, awareness)	Medium-term outcomes/ Objectives (Change in: behaviors, practices, policies, procedures)	Long-term outcomes (Change in situation: environment, social, economic, political conditions)	I p a c t
Time	Initial ideation Concept design	Ideas & Concepts Design Capture & Accessibility	Design Collaboration Team Engineers/ Designers	Design reuse Virtualization	Generation of new business Improved corporate communication	Waste reduction Innovation/ New Products Continuous Improvement Sustainable Green manufacturing	
	Product design	Change Control & Change Capacity Configuration Management Metrics Commercial Cost of Risk	Engineers/ Designers	Faster time to production	Software integration		FMENT
Energy	Manufacturing design	Product Development & prototype	Suppliers/ vendors	Cost reduction	Globalization		NVES
	Production	Resource Optimization Product Quality	Engineers, Manufacturers	Cost performance Larger market share	Product quality		IRN ON
	Delivery to the customer	Completion Performance	Wholesalers/ merchants/ vendors/ retailers	Premium pricing Increased profitability	Improved business cycle time Customer satisfaction Error reduction		RETI
	In-service support	Portfolio Management	Customers	More efficient service to customers	Service quality Knowledge/ document management		
Materials)	Retirement from use.	Portfolio Management	Government Agencies: EPA	Environmentally friendly product disposal mechanisms	Sustainability		

EXTERNAL FACTORS INFLIENCING REDEOMCENCE (+/)

Phase 3: Confirmatory Factor Analysis & Heirachical Modeling

- Confirmatory phase: large-scale study Survey with ArcherGrey: est. 1500 respondents
- Multidimensionality of PLM
- Metrics validated
- Proof of concepts as represented by data & publications

Hierarchical Modeling

- Also known as multilevel modeling, empirical Bayes, random coefficient modeling, or growth curve modeling
 - allows for the organization into a hierarchy of the lowest-level units (smallest and most numerous) as successively higher-level units.
- identify of factors affecting performance and their relationships,
- structuring the factors hierarchically,
- quantify the effects of the factors on performance.

Hierarchical Metrics Framework

CFO, CEO **Plant Accounting**, **Finance Plant Management**, **Operations** Management **Operators, Supervisors,** Quality, Engineers, **Technicians**

Source: *Metrics that Matter Guidebook & Framework* © 2006 MESA International

PLM Corporate Strategy: Waste Reduction & Innovation

Modified from Metrics that Matter Guidebook & Framework. © 2006 MESA International

Metric	Subcategory	Formula	
Cost of products to market	Cost of products to market Product's research & dev cost Engineering design cost Product investment cost Product dev & testing cost Cost of quality	$\begin{array}{l} Cr = [C_{nn} + C_{rr} + C_{rc} + C_{rt} + c_{rd} \\ C_{nn} = Design management cost \\ C_{rr} = Advanced R & D cost \\ C_{rc} = Engineering design cost \\ C_{rt} = Product dev & testing cost \\ C_{rd} = Engineering data cost \end{array}$	
Total throughput cost	Procurement cost Non-recurring manuf. cost Recurring manufacturing cost Facilities cost Initial logistics support cost Cost of quality	New facilities, spares, support equip. acquisition, system recurring acquisition, data, initial training, training equip., production tooling & test equip., production program start-up, initial item mgt, field eng, equip. installation.	
Operational & materials cost	Cost of quality Operations cost Maintenance cost Product modification cost Product phase-out & disposal cost	$\begin{split} & C_{oo} = [C_{oop} + C_{oot} + C_{oof} + C_{ooe}f4\\ & C_{oop} = \text{Operating personnel cost}\\ & C_{OOI} = \text{Cost of operator training}\\ & C_{oof} = \text{Cost of operational facilities}\\ & C_{ooe} = \text{Cost of support \& handling}\\ & \text{Dowlatshahi, 2001} \end{split}$	

Metric	Subcategory	Formula
Time of new products to market	Speed of response to customers (SRC) Product time to market (PTM) Design lead time (DLT) Order-to-delivery cycle (OTDC) Total product delivery lead time (TPDLT)	DLT = Σ (Time from product concept to product design+time from product design to prototype) TPDLT = Σ (Design lead time + supplier delivery lead time + manufacturing lead time + distribution lead time + order lead time)
Total throughput time	Manuf. lead time (MLT) Set-up time (SUT) Prod. cycle time (PCT) Change over time (COT) Delay time (DT) Distribution lead time (DILT) Manuf. response time (MRT) Procurement lead time (PLT)	MLT = L (Time from receipt of an order to the start of manufacturing + time from start of manufacturing to entry into the distribution system)
Delivery time of purchased materials	Delivery reliability (DR) Delivery speed (DS)	DR = Measured in terms of the percent of orders delivered by the promise date

Ongoing Work

Development of a Balanced PLM Metrics Score Card

A BALANCED FRAMEWORK FOR METRICS

Understanding the Financial Metrics and What affects them in Manufacturing

Logical Steps to using Metrics Alignment in order to Achieve Manufacturing Excellence

What Metrics are in a Balanced Score Card?

The Score Card includes a balanced view of an organization

- Learning and Growth
- Customer Relations
- Internal Processes
- Financial Measures

Balanced Metrics Framework

Manufacturing costs are more closely related to financial results than manufacturing metrics

Metrics

Future Work

Development of Product Lifecycle Implementation Maturity Model

Product Lifecycle Implementation Maturity Model

Implementation metrics are used to demonstrate progress in implementing PLM.

Product Lifecycle Implementation Maturity Model

Product Lifecycle Implementation Maturity Model

- Level 1: the focus is on appropriate resources and processes.
- Level 2: Established performance management processes to measure processes: Efficiency & effectiveness metrics.
- Level 3: Companies should be measuring their outputs
- Level 4: Collection of detailed measures of the product quality
- Level 5: Optimizing, continuous process improvement

Future Work

Field Testing: Testing & Validating Metrics Framework

PLM Metrics 2.0

References

- Dowlatshahi, S. (2001). Product Life Cycle Analysis: A Goal Programming Approach. The Journal of the Operational Research Society, 52, 1201-1214.
- Chew, E., Clay, A., Hash, J. Bartol, N., Brown, A. (2006). Guide for Developing Performance Metrics for Information Security. Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology
- Gifford, C. Metrics that Matter: Uncovering KPIs that Justify Operational Improvements. Mesa InternationI
- Batenburg, R., Helms, R. Versendaal, J. (2005). The maturity of Product Lifecycle Management in Dutch organizations: A strategic alignment perspective. Institute of Information & Computing Sciences, Utrecht University, Technical Report UU-CS-2005-009. www.cs.uu.nl