Robust Computational Geometry for Design, Manufacturing, and Robotics

Elisha Sacks, Purdue University
Victor Milenkovic, University of Miami

eps@cs.purdue.edu
Computational geometry develops algorithms for geometry and topology problems.

The algorithms assume that arithmetic operations have infinite precision and constant time/space complexity.

The robustness problem is how to implement the algorithms with computer arithmetic.

Floating point arithmetic is fast, but inaccurate.

Integer arithmetic is accurate, but slow.
Robustness

Computational geometry algorithms branch on the signs of predicates. Unsafe predicates cause robustness problems.

- **Predicate:** \(f(a) > 0 \) means true; \(f(a) < 0 \) means false.
- **Unsafe:** \(|f(a)| \) less than evaluation accuracy.
- **Degenerate:** \(f(a) = 0 \), always unsafe.
Inconsistency

- Unsafe predicates can lead to *inconsistent* outputs that are false for every input.

- Example: \(a < b < c < a \) is inconsistent; sorting runs forever.

- Direct floating point implementation of real arithmetic causes inconsistency.

- Inconsistency causes algorithms to fail or output garbage.
Exact computational geometry

Implement predicates exactly using integer arithmetic.

- Technical problems
 - Algebraic degree and bit complexity grow rapidly.
 - Slow complex software.
 - Degeneracy not handled.

- Conceptual problem
 - Engineering is approximate.
 - Numerical analysis and floating point work well.
 - Why should computational geometry be exact?
Approximate computational geometry

Implement predicates using floating point arithmetic.

- Inconsistency sensitivity.
 - Modify algorithm to ensure accuracy.
 - Advantage: speed and accuracy.
 - Problems: lack of generality, error analysis.

- Controlled linear perturbation.
 - Modify input to ensure accuracy.
 - Fast and accurate.
 - General purpose robustness module.
 - Degeneracy handled.
Perturbation strategy

- Compute perturbed input that makes predicates safe.
- Error: distance between original and perturbed inputs.
- Advantages:
 - General.
 - Degeneracy handled transparently.
Perturbation algorithms

- Controlled perturbation.
 - Uniform perturbation.
 - Perturbation interval based on evaluation error.
 - Large errors.
 - No equality constraints or implicits.

- Controlled linear perturbation.
 - Optimal perturbation of linearized predicates.
 - Transfer results to original predicates.
 - Nearly minimal errors.
 - Equality constraints and implicits handled.
Controlled linear perturbation

- Given: predicate $f(x)$ with input $x = a$ and safety threshold ϵ.
- If f is safe, return the sign of $f(a)$.
- Pick perturbation direction v.
- Select sign, s, of $v \cdot \nabla f$.
- Compute $p = a + \delta v$ that makes $f(p)$ safe.
 - $f(p) \approx f(a) + \delta (v \cdot \nabla f)$
 - Solve $s[f(a) + \delta (v \cdot \nabla f)] \geq \epsilon$ for minimal δ.
 - This is a linear equation!
- Return s.

Robust Computational Geometry for Design, Manufacturing, and Robotics – p. 9/2
Sorting example

- Sort $\mathbf{x} = (x_1, x_2, x_3, x_4)$ with $\mathbf{a} = (0, 0, 0, 1)$.
- The $x_i < x_j$ predicate polynomial is $x_j - x_i$.
- The polynomials with $i, j < 4$ are unsafe.
- Their linearizations are $a_j + v_j - a_i - v_i$.
- Set $\mathbf{v} = (0.3, 0.8, 0.4, -1)$.
- The sign of $x_3 - x_1$ is 1 because $0.4 - 0.3 > 0$.
- The inequality is $0.1\delta \geq \epsilon$, so $\delta \geq 10\epsilon$.
- The sign of $x_3 - x_2$ is -1 because $0.4 - 0.8 < 0$.
- The inequality is $0.4\delta \geq \epsilon$, so $\delta \geq 2.5\epsilon$.
- The maximum, $\delta = 10\epsilon$, makes the input safe.
CLP versus controlled perturbation

- Comparison on convex hull and Delaunay triangulation.
- Controlled perturbation accuracy 3 digits.
- CLP accuracy 10–13 digits.
- Similar running times.
- Results transfer to other computational geometry algorithms.
CLP versus ECG

- Arrangement of 100 random degree-6 algebraic curves: 22 seconds with CLP; 220 seconds with ECG [Eigenwillig, 2008].
- Arrangement of 100 degenerate curves.
CLP versus ECG

Arrangement contains 1330 vertices, including 43 clusters of nearly equal vertices with an average of 23 vertices per cluster and 55 vertices in the largest cluster.

1.5 seconds with CLP; estimated 30,000 seconds with ECG.

Estimate based on measured root separation, ρ, and on published $\log^2 \rho$ running time.
Research issues

- Optimal versus random perturbation direction.
- Verification on original polynomials.
- Imposing equality constraints.
- Defining implicit variables.
- Handling singular predicates.
- Output simplification.
Applications

- Planar robot path planning (Milenkovic and Trac).
- Spatial robot path planning (Sacks and Milenkovic).
- Minkowski sums of polyhedra (Kyung).
- Mechanism design (Sacks).
- Part layout (Milenkovic).
Planar robot path planning
Spatial robot path planning
Minkowski sum of polyhedra
Mechanism design

\[\theta_D \]

\[\theta_I \]

\[\theta_D \]

\[\theta_I \]
Part layout