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Robustness Problem

Algorithms are expressed in real RAM model.

Input is assumed in general position.

Implementations must use computer arithmetic.

Implementations must handle degenerate input.

Implementations must be fast and accurate.
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Geometric Predicates
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Main interface with real RAM model (also constructions).

Predicate P (x) is true when polynomial f(x) is positive.

Unsafe predicate: |f(x)| near the rounding unit.

Degenerate predicate: f(x) = 0.

Example: b above cd if (d − c) × (b − c) > 0;
f(bx, by, cx, cy, dx, dy) = (dx−cx)(by−cy)−(dy−cy)(bx−cx).
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Exact Computational Geometry

Implement predicates exactly using algebra.

Technical problems
Running time grows rapidly with algebraic degree.
Bit complexity grows rapidly.
Degeneracy requires separate, complex algorithm.

Conceptual problem
Scientific computing is approximate because exact
solutions are impractical and unnecessary.
Gold standard is fast algorithms with error bounds.
Why should computational geometry be exact?
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Approximate Computational Geometry

Implement predicates approximately using floating point
arithmetic and numerical solvers.

Advantages:
Running time grows modestly with degree.
Constant bit complexity.
Small constant factors.

Challenge: generate consistent output.
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Consistency
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An algorithm is consistent when for every input, i, there
exists a perturbed input, p, such that the computed
predicates are correct for p.

The output error is the distance from i to p, ||p − i||.
Inconsistent algorithms can crash or output garbage.
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Perturbation Strategy

1. Derive a safety threshold, e, such that |f(x)| > e in
floating point implies safety.

2. Every time a predicate polynomial is evaluated, check
its threshold.

3. If the check fails, perturb the input.
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CP versus CLP

Controlled perturbation (CP)
Perturb randomly and restart.
Error exponential in polynomial degree.
No equality constraints or parameter definitions.

Controlled linear perturbation (CLP)
Perturb carefully and continue.
No error on safe polynomials.
Error grows modestly with degree.
Equality constraints and parameter definitions.
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CLP Strategy

Given: polynomial f(x) with input x = a.

1. If |f(a)| > e, return its sign.

2. Compute p such that |f(p)| > e and likewise for
previous polynomials.

3. Return the sign of f(p).
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CLP Algorithm

Write p = a + δv with δ ≥ 0 the perturbation size and v
the perturbation direction.

Linearize f(p) ≈ f(a) + δ∇f · v with ∇f the gradient.

Linearization error is negligible because δ is tiny.

Initialize δ = 0, v = 0 and update for each unsafe f .

Best v for sign s is s∇f ignoring prior unsafe fi.

Define u by subtracting ∇fi from ∇f and unitizing.

Update v to v + su; pick s = ±1 with smaller
δ = (2se − f(a))/(s∇f · v); update δ.

Prior fi are uneffected by change in v; become safer
due to increase in δ.

Verify signs of f(p) for final p.
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Sorting Example

Sort x = (0, 0, 0, 1) in increasing order.

Predicate xi < xj has polynomial xj − xi with e = 2µ.

Degenerate for i, j < 4; safe otherwise.

1) Evaluate x2 − x1 with v = (0, 0, 0, 0) and orth = ∅.

∇f = (−1, 1, 0, 0), so u1 =
√

0.5(−1, 1, 0, 0).

For s = 1, δ = 2se−f(a)
s∇f ·v = 4µ

u1·∇f .

For s = −1, δ = −4µ
−u1·∇f .

CLP picks s = 1, δ ≈ 2.8µ, and x1 < x2.
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Sorting Example Continued

2) Evaluate x3 − x1 with v = u1 and orth = {u1}.

∇f = (−1, 0, 1, 0), so u2 =
√

1/6(−1,−1, 2, 0).

For s = 1, δ < 2.8µ, so CLP picks it and x1 < x3.

3) Evaluate x3 − x2 with v = u1 + u2 ≈ (−1.1, 0.3, 0.8, 0) and
orth = {u1, u2}.

∇f = (0,−1, 1, 0), so u3 = (0, 0, 0, 0).

Only choice is s = 1 with δ ≈ 4µ
−0.3+0.8 ≈ 7.7µ and

x1 < x2.

Final order, x1 < x2 < x3, derives from v.
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Parameter Definitions
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Define new parameters, y = b, with equations g(x, y) = 0.

Enforce linearized equations by adding to orth.

Extend v to y by solving gxv + gyw = 0.

Example: e = (y1, y2), b = (3.6,−1.8), equations g(x, y)

(y1 − x1)
2 + (y2 − x2)

2 − x2
3 = 0

(y1 − x4)
2 + (y2 − x5)

2 − x2
6 = 0.

Rank deficient case requires special handling.
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Singular Predicate Polynomials

Polynomial f is singular when ∇f = 0.

Core CLP fails on near singular unsafe polynomials.

We avoid near singularity by predicate reformulation
using judicious parameter definitions.

Example: point b above line cd with b = c = d.

Define unit vector, u = (d − c)/||d − c||, with equations
u · u − 1 = 0 and u × (d − c) = 0.

Reformulation: u × (b − c) = ux(by − cy) − uy(bx − cx)

Gradient is large: (−uy, ux, uy,−ux, by − cy, cx − bx).
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Minkowski Sums

Minkowski sum of point sets A and B is the point set
A ⊕ B = {a + b | a ∈ A, b ∈ B}.

Minkowski sums of polyhedra have many applications:
packing, path planning, assembly, graphics, solid
modeling, mechanics, simulation.

Prior implementations decompose polyhedra into
convex pieces.

Complexity is Ω(n4) for input size n; prohibitive.

Approximate algorithms are tricky and slow.

Efficient output sensitive algorithm known for 30 years.

We use CLP to obtain the first robust implementation.

Controlled Linear Perturbation – p. 15/21



Cube + Polyhedron
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Torus + Polyhedron
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Cube + Torus
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Sphere + Helix
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Results

A, B, and conv the number of triangles in part A, part B,
and the convolution, time the running time in seconds, safe
and unsafe the number of safe and unsafe predicate
polynomials, and δ the final perturbation size.

A B conv time safe unsafe δ

a 12 32 130 0.1 4e5 5,393 3e-12
b 32 2068 4336 5 2.2e6 13,145 8e-10
c 12 2068 2946 4.3 1.1e6 15,991 2e-10
d 760 4012 40,212 49 27e7 43,752 1e-10
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Future Work

Research
Automated handling of near singular polynomials.
Output simplification.

Education
Computational geometry curriculum organized
around robustness.
Computational geometry textbook organized
around robustness.

Applications
Patent.
Software library.
Robust applications software.
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