Controlled Linear Perturbation

Elisha Sacks, Purdue University joint work with Victor Milenkovic, University of Miami Min-Ho Kyung, University of Ajou

Research supported by a PLM grant and by NSF grants CCF-0904832 and CCF-0904707.

Robustness Problem

- Algorithms are expressed in real RAM model.
- Input is assumed in general position.
- Implementations must use computer arithmetic.
- Implementations must handle degenerate input.
- Implementations must be fast and accurate.

Geometric Predicates

Main interface with real RAM model (also constructions).

- Predicate P(x) is true when polynomial f(x) is positive.
- Unsafe predicate: |f(x)| near the rounding unit.
- **Degenerate predicate:** f(x) = 0.
- Example: *b* above *cd* if $(d c) \times (b c) > 0$; $f(b_x, b_y, c_x, c_y, d_x, d_y) = (d_x - c_x)(b_y - c_y) - (d_y - c_y)(b_x - c_x)$.

Exact Computational Geometry

Implement predicates exactly using algebra.

- Technical problems
 - Running time grows rapidly with algebraic degree.
 - Bit complexity grows rapidly.
 - Degeneracy requires separate, complex algorithm.
- Conceptual problem
 - Scientific computing is approximate because exact solutions are impractical and unnecessary.
 - Gold standard is fast algorithms with error bounds.
 - Why should computational geometry be exact?

Approximate Computational Geometry

Implement predicates approximately using floating point arithmetic and numerical solvers.

- Advantages:
 - Running time grows modestly with degree.
 - Constant bit complexity.
 - Small constant factors.
- Challenge: generate consistent output.

Consistency

- An algorithm is consistent when for every input, i, there exists a perturbed input, p, such that the computed predicates are correct for p.
- The output error is the distance from i to p, ||p i||.
- Inconsistent algorithms can crash or output garbage.

Perturbation Strategy

- 1. Derive a safety threshold, e, such that |f(x)| > e in floating point implies safety.
- 2. Every time a predicate polynomial is evaluated, check its threshold.
- 3. If the check fails, perturb the input.

CP versus CLP

- Controlled perturbation (CP)
 - Perturb randomly and restart.
 - Error exponential in polynomial degree.
 - No equality constraints or parameter definitions.
- Controlled linear perturbation (CLP)
 - Perturb carefully and continue.
 - No error on safe polynomials.
 - Error grows modestly with degree.
 - Equality constraints and parameter definitions.

CLP Strategy

Given: polynomial f(x) with input x = a.

- 1. If |f(a)| > e, return its sign.
- 2. Compute p such that |f(p)| > e and likewise for previous polynomials.
- 3. Return the sign of f(p).

CLP Algorithm

- Solution Write $p = a + \delta v$ with $\delta \ge 0$ the perturbation size and v the perturbation direction.
- Linearize $f(p) \approx f(a) + \delta \nabla f \cdot v$ with ∇f the gradient.
- Linearization error is negligible because δ is tiny.
- Initialize $\delta = 0, v = 0$ and update for each unsafe f.
- **D** Best v for sign s is $s \nabla f$ ignoring prior unsafe f_i .
- Define u by subtracting ∇f_i from ∇f and unitizing.
- Update v to v + su; pick $s = \pm 1$ with smaller $\delta = (2se f(a))/(s\nabla f \cdot v)$; update δ .
- Prior f_i are uneffected by change in v; become safer due to increase in δ .
- Verify signs of f(p) for final p.

Sorting Example

- Sort x = (0, 0, 0, 1) in increasing order.
- Predicate $x_i < x_j$ has polynomial $x_j x_i$ with $e = 2\mu$.
- Degenerate for i, j < 4; safe otherwise.
- 1) Evaluate $x_2 x_1$ with v = (0, 0, 0, 0) and $orth = \emptyset$.
 - $\nabla f = (-1, 1, 0, 0)$, so $u_1 = \sqrt{0.5}(-1, 1, 0, 0)$.

• For
$$s = 1$$
, $\delta = \frac{2se - f(a)}{s\nabla f \cdot v} = \frac{4\mu}{u_1 \cdot \nabla f}$.

• For
$$s = -1$$
, $\delta = \frac{-4\mu}{-u_1 \cdot \nabla f}$.

• CLP picks s = 1, $\delta \approx 2.8 \mu$, and $x_1 < x_2$.

Sorting Example Continued

2) Evaluate $x_3 - x_1$ with $v = u_1$ and $orth = \{u_1\}$.

•
$$\nabla f = (-1, 0, 1, 0)$$
, so $u_2 = \sqrt{1/6}(-1, -1, 2, 0)$.

• For s = 1, $\delta < 2.8\mu$, so CLP picks it and $x_1 < x_3$.

3) Evaluate $x_3 - x_2$ with $v = u_1 + u_2 \approx (-1.1, 0.3, 0.8, 0)$ and orth = $\{u_1, u_2\}$.

•
$$\nabla f = (0, -1, 1, 0)$$
, so $u_3 = (0, 0, 0, 0)$.

- Only choice is s = 1 with $\delta \approx \frac{4\mu}{-0.3+0.8} \approx 7.7\mu$ and $x_1 < x_2$.
- Final order, $x_1 < x_2 < x_3$, derives from v.

Parameter Definitions

full rank

rank deficient

Define new parameters, y = b, with equations g(x, y) = 0.

- Enforce linearized equations by adding to *orth*.
- Extend v to y by solving $g_x v + g_y w = 0$.
- Example: $e = (y_1, y_2), b = (3.6, -1.8),$ equations g(x, y) $(y_1 - x_1)^2 + (y_2 - x_2)^2 - x_3^2 = 0$ $(y_1 - x_4)^2 + (y_2 - x_5)^2 - x_6^2 = 0.$
- Rank deficient case requires special handling.

Singular Predicate Polynomials

- Polynomial f is singular when $\nabla f = 0$.
- Core CLP fails on near singular unsafe polynomials.
- We avoid near singularity by predicate reformulation using judicious parameter definitions.
- Example: point b above line cd with b = c = d.
- Define unit vector, u = (d c)/||d c||, with equations $u \cdot u 1 = 0$ and $u \times (d c) = 0$.
- Reformulation: $u \times (b c) = u_x(b_y c_y) u_y(b_x c_x)$
- Gradient is large: $(-u_y, u_x, u_y, -u_x, b_y c_y, c_x b_x)$.

Minkowski Sums

Minkowski sum of point sets *A* and *B* is the point set $A \oplus B = \{a + b \mid a \in A, b \in B\}.$

- Minkowski sums of polyhedra have many applications: packing, path planning, assembly, graphics, solid modeling, mechanics, simulation.
- Prior implementations decompose polyhedra into convex pieces.
- Complexity is $\Omega(n^4)$ for input size *n*; prohibitive.
- Approximate algorithms are tricky and slow.
- Efficient output sensitive algorithm known for 30 years.
- We use CLP to obtain the first robust implementation.

Cube + Polyhedron

Torus + Polyhedron

Cube + Torus

Sphere + Helix

Results

A, B, and conv the number of triangles in part A, part B, and the convolution, *time* the running time in seconds, *safe* and *unsafe* the number of safe and unsafe predicate polynomials, and δ the final perturbation size.

	A	B	conv	time	safe	unsafe	δ
а	12	32	130	0.1	4e5	5,393	3e-12
b	32	2068	4336	5	2.2e6	13,145	8e-10
С	12	2068	2946	4.3	1.1e6	15,991	2e-10
d	760	4012	40,212	49	27e7	43,752	1e-10

Future Work

Research

- Automated handling of near singular polynomials.
- Output simplification.
- Education
 - Computational geometry curriculum organized around robustness.
 - Computational geometry textbook organized around robustness.
- Applications
 - Patent.
 - Software library.
 - Robust applications software.