

Product Lifecycle Management Metrics Project Update

Cynthia Tomovic, Ph.D. Center for Product Lifecycle Management <u>tomovicc@purdue.edu</u> (765) 494-5597

Project Scope

Initiate study on PLM metrics
 Review PLM literature
 Develop protocol – categories and items
 Define sample
 Conduct interviews

PLM Literature Review Highlights

Strategic business approach

- Integrates people, processes/practices, technology
- Across product's lifecycle design through manufacture, deployment, maintenance, culminating in the product's removal from service and final disposal
- Trading product information for wasted time, energy, and material across the entire organization and into the supply chain
- Driving the next generation of lean thinking

Michael Grieves, *Product Lifecycle Management: Driving the Next Generation of Lean Thinking* (New York: McGraw-Hill, 2006), 39.

PLM Lifecycle Model

External Drivers

- Scale companies have gotten larger
- Complexity variation in products have increased
- Cycle time manufacturing timeframe has decreased due to competition for first to market
- Information technology digital information is mobile and price of technology has decreased
- Globalization worldwide manufacturing arena and markets
- Regulation increasing scope of governmental regulations worldwide

Michael Grieves, *Product Lifecycle Management: Driving the Next Generation of Lean Thinking* (New York: McGraw-Hill, 2006), 95-109.

Internal Drivers

Productivity – quest for increased productivity

- Innovation product and process
- Collaboration within and between organizations
- Quality meeting specifications and standard of usage

□ **Return on investment** – ratio of input to output

Michael Grieves, *Product Lifecycle Management: Driving the Next Generation of Lean Thinking* (New York: McGraw-Hill, 2006), 109-120.

Technology as Driver

Leading cause of transformation in business
Geographical barriers less relevant
Cultural barriers lowered through information
Boosting productivity
Data sharing
Video- teleconferencing

Video- teleconferencing

B. Delong, "Globalization means we share jobs as well as good," Financial Times, August 27, 2003.

Globalization as Driver

Network of international linkages
 Highly competitive global marketplace
 Interdependent global economy

T. Morrison, W. Conaway, and J. Bouress, *Dun & Bradstreet's Guide to Doing Business Around the World* (Upper Saddle River, NJ: Prentice Hall, 1997).

Concurrent Engineering Practice

Dero

- Increased innovation
- Quicker to market

🗆 Con

 If significant changes are required, results in costly and time consuming rework to manufacturing process and/or tooling

Koufteros, X., Vonderembse M., \$ Doll, W. (2001). Concurrent engineering and its consequences. Journal of Operations Management, 19 (1), 97-115. Krishnan, V. (1996). Managing the simultaneous execution of coupled phases in concurrent product development. IEEE Transactions on Engineering Management, 43 (2), 210-217.

Concurrent Engineering Reduce Risk

Improve communications

 PDM

 Engage in collaborative design
 Capture all product and process data through out the lifecycle
 PLM

PLM Benefits/Values

Efficiencies
 Time
 Energy
 Materials
 Innovation
 Product
 Processes

Revenue

PLM Advocates and Software Vendors

- □ Solve problems *more*
 - Quickly
 - Effectively
 - Efficiently
- □ Bring products to market more
 - Quickly
 - Lower costs
- □ Seize market opportunities *more*

Assessment Model

PLM and Alignment with Strategic Plan

- Strategic Plan
 - Organizational Values, Culture, Principles
 - Mission
 - Vision
 - Signature Areas
 - Peer Organizations
 - Priorities
 - Goals
 - Action Plans

PLM Metric/Measure

Valid –measures what is intended
 Reliable – repeatable
 Defined by two values

 Baseline – current state
 Target – future state

Defines data collection process
 Lines of responsibility
 Timelines

Defines how data is used, implemented, or fed back into the system
 Lines of responsibility
 Timelines

Metrics

Types and Levels of Metric

🗆 Туре

- Business
- Product
- Processes
- Other

Levels

- Organizational level
- Functional level

Matt Symonds (2005). PLM Metrics. Energizing Enterprise Conference, Purdue University.

Stark, J. (2005). Product Lifecycle Management: 21st Century Paradigm for Product Realisation. London: Pringer.

PLM Impact Business Metrics

Revenue growth Market share Margins **Operating costs** Cash flow Market capitalization (share price) Number of employees Overhead hours/direct hour

PLM Impact Product Metrics

Technical performance
Requirements met
Product reliability
Unit costs
Defects

PLM Impact Process Metrics

Time to profitability
Change process cycle time
Design error rate
Development flow time
Work-in-progress
On-time delivery

Percentage design reuse

Non-recurring hours per design release

Manufacturing per unit

Quality rejections

PLM Impact Other Metrics

Employee morale
Customer satisfaction
Supplier relations
Brand awareness

Levels of Measures

- Improvements in effectiveness and efficiency throughout the entire lifecycle
 - Meeting customer requirements better
 - Improving sales process
 - Improving rate of production
 - Meeting production and delivery schedules
 - Preventing future product failure through knowledge of past performance
 - Improving product maintenance and service through retirement

Revenue increases

- Number of new customers captured by new product and new product support
- Product price paid by customers
 - Increasing product quality
 - New functions and features
 - Charges due to first-to-market (premiums justifies price increases)
 - Range of product variation based on customer demand
 - Frequency of purchase due to first-to-market
 - Range of support services

Cost savings

- Direct labor costs
- Indirect labor costs administration
- Material and energy consumption
- Costs associated with purchasing of designs and parts
- Costs of housing inventory

- Organizational Improvements
 - Number of innovations
 - Customer response time
 - Management of product retirement
 - Integration of new technologies into production
 - Defining baselines and targets
 - Rebaselining when appropriate

Product and Process Definition

- Defining, analyzing, simulating products
- Identifying service and process definition data
 - CAD
 - Rapid prototyping
 - Routing
 - Simulation

Product Data and Configuration Management

- Managing product, service and process definition data throughout the product lifecycle
 - Engineering document data
 - Product data management
 - Configuration management
 - Regulatory management
 - Compliance management
 - Quality management systems

Collaborative Software

- Identifying processes that allow people to work together over the Web or product and process data
 - E-mail
 - Electronic whiteboards
 - Discussion and chat rooms
 - Intranets
 - Extranets
 - Shared product spaces
 - Portals
 - Project directories

Customer-oriented Applications

- Capturing from and presenting product and process definition data from customers
 - Systems for presenting product catalogues
 - Systems for capturing requirements and orders

- Visualization/Viewing
 - Identifying technologies for visualizing, viewing, and printing product and process data
 - Virtual prototyping
 - Digital mock-up systems

Data Exchange

 Transferring product and process definition data from a format that is usable in one system to a format this is usable in another, e.g., DassaultSystems to UGS PLM Solutions

Supplier-oriented Applications
 Capturing product and process definition data from and presenting to suppliers
 Component/supplier data management system
PLM Impact Functional Level

Project Management

- Managing a company's individual productrelated projects
 - Phase/gate systems
 - Risk management systems

Portfolio Management

 Managing a company's portfolio of existing products and parts, and those under development

Integration
 Integrating PLM components from one system to another, e.g., CRM, ERP, SCM

PLM Impact Functional Level

Systems Changes

 Managing updates in PLM methodologies and procedures, implementation, and impact system-wide

Preliminary Results

Agreement – "in Principle" with Purpose of PLM

 Substitute Information for Wasted Time, Energy, Materials
 Capture and Reallocate Resources
 Results in Product and Process Innovation
 Increase Revenue Stream

Varying Degrees of "Belief" in and Implementation of PLM

Panacea ?

- Implementation ?
- Phase one Stuck in design manufacturing
- □next ?

Frustration Within Functions

- Level of granularity drill down, when to stop
- Reporting formats lots of data, little information
- Lack of time to use data/information collected

Frustration Between Functions

- Difference in vocabulary
- Difference in perceived importance of information
- Difference in perceived timeliness of information
- Differences in reporting formats

Frustration Between Management Levels

Middle ManagementUpper Management

Middle Managers -Functional Level

Product and process definition Product data and configuration Collaboration software Customer-orientation □ Visualization/viewing Data exchange Supplier relationships

Upper Management – Organizational Enterprise Level

Return on Investment
 Hardware
 Software
 Training
 Market Shares
 Increased Revenue

Results

- Different level of understanding and sense of urgency between middle and upper management
 - PLM stuck at design phase, e.g., vaulting for CAD models and creation of Bill of Materials
- □ Middle managers express lack of support
 - No champion in upper management
 - Lack of financial support to continue phasing in PLM as initially agreed upon in plan
- Upper management express frustration with lack of evidence to justify further expenditures

Recommendations

Improve communications enterprise-wide
 Translate impact of PLM between functional and enterprise levels
 Increase education and training on PLM enterprise-wide
 Champion at the highest levels
 Continue development of PLM metrics

Observations of Project

- Satisfied with project's personnel development of PLM expertise
- Satisfied with protocol development
- Satisfied with assessment model
- Question methodology and sample
 - Interviews versus survey
 - Variation in PLM experience within sample
 - Size of sample
- Project requires continued funding

Thank you

Cynthia Tomovic tomovicc@purdue.edu (765) 494-5597