Measuring the Impact of Product Lifecycle Management: An Assessment Model and Metrics Framework

Cynthia Tomovic, Abe Walton, Michael Grieves
Ben Birtles, Brandon Bednar, Lisa Ncube
Purdue University
Introduction

• Measure the impact of PLM
 – How well are we PLMing?
 – Can we enhance the traceability of our PLM investments?
PLM Metrics Project

– Define an Assessment Process

– Define a Metrics Framework
Assessment Model
PLM Assessment Process Model

1. Goals
2. Metrics (Impact Measurement)
3. Methodology (Data Collection)
4. Procedures (Data Use)

Strategic Plan
Metrics Framework
PLM/Lean Thinking
Savings due to *Waste Reduction*

- To all aspect of a product’s life
 - *Plan/design*
 - *Build*
 - *Support*
 - *Removal/dispose*

- Integrated, information-driven approach to reducing wastes associated with
 - *Time*
 - *Energy*
 - *Materials*

- Across
 - *People*
 - *Processes and practices*
 - *Technology*

PLM – Next Generation Lean
Revenue Generation due to *Innovation*

- Provides opportunities to reallocate captured resources toward *innovation*
 - Functionality
 - Quality

- Across
 - *Product*
 - *Process*

Product’s Lifecycle

<table>
<thead>
<tr>
<th>Build</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan/Design</td>
<td>Dispose</td>
</tr>
</tbody>
</table>

The lifecycle of a product includes stages such as build, plan/design, support, and dispose. The process flows from build to support to dispose, with bidirectional movement between plan/design and dispose.
Information Characteristics About a Product/Process

- **Singularity** – unique and controlling version of the information
- **Correspondence** – link between actual and virtual representation
- **Cohesion** – integration of various views/schematics/descriptions
- **Traceability** – chronological ordering of all documents through time
- **Reflectivity** – changes in virtual representation reflect actual changes and vice-versa
- **Cued Availability** – having the right information available when needed

Information Characteristics Reflected in PLM Metrics

<table>
<thead>
<tr>
<th>Build</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singularity</td>
<td>Singularity</td>
</tr>
<tr>
<td>Correspondence</td>
<td>Correspondence</td>
</tr>
<tr>
<td>Cohesion</td>
<td>Cohesion</td>
</tr>
<tr>
<td>Traceability</td>
<td>Traceability</td>
</tr>
<tr>
<td>Reflectivity</td>
<td>Reflectivity</td>
</tr>
<tr>
<td>Cued Availability</td>
<td>Cued Availability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan/Design</th>
<th>Dispose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singularity</td>
<td>Singularity</td>
</tr>
<tr>
<td>Correspondence</td>
<td>Correspondence</td>
</tr>
<tr>
<td>Cohesion</td>
<td>Cohesion</td>
</tr>
<tr>
<td>Traceability</td>
<td>Traceability</td>
</tr>
<tr>
<td>Reflectivity</td>
<td>Reflectivity</td>
</tr>
<tr>
<td>Cued Availability</td>
<td>Cued Availability</td>
</tr>
</tbody>
</table>

Waste Reduction Framework (per phase)

<table>
<thead>
<tr>
<th>PLM Elements</th>
<th>People</th>
<th>Process/Practices</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste/Reallocation Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plan/Design Phase

Waste Reduction Metrics

<table>
<thead>
<tr>
<th>PLM Elements</th>
<th>People</th>
<th>Process/Practices</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>• Time to locate information</td>
<td>• Number of times designs are reused</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>• Amount of energy used to support face to face meetings</td>
<td>• Amount of energy required to sustain a manufacturing line</td>
<td>• Amount of energy spent in distribution of parts to sub-assemblies</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>• Amount of inventory</td>
<td>• Number of times raw material is delivered correctly</td>
</tr>
</tbody>
</table>
Innovation Framework (per phase)

<table>
<thead>
<tr>
<th>PLM Elements</th>
<th>Product</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plan/Design Phase
Innovation Metrics

<table>
<thead>
<tr>
<th>PLM Elements</th>
<th>Product</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation Components</td>
<td>• Number of new features</td>
<td>• Improved process capabilities</td>
</tr>
<tr>
<td>Functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality</td>
<td>• Improved quality</td>
<td>• Better Quality Management Systems</td>
</tr>
<tr>
<td></td>
<td>• Number of and costs of warranty problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Number and costs of liability problems</td>
<td></td>
</tr>
</tbody>
</table>
Waste Reduction/Reallocation for Innovation

Objective

Phase

Target Area

Key Performance Indicator

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Generate New Business Opportunities
- Quality Management Systems
- Innovation/Adaptability/Management
- Support of Entire Lifecycle
- Improved Business Cycle Time

Improve Corporate Communications
- Organizational Change
- Reliance on Paper
- Integration of Software Tools
- Standard Design Catalogs

Standardized Data Source
- User Search Capabilities
- People Benefits

Faster Customer Response Time
- Management of Product Data
- Reuse of Designs
- Fewer Errors
- Automated, Digital, Information Core

Process Definition
- Document Management
- Engineering Change Management

Objective

Phase

Target Area

Key Performance Indicator

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Business Performance Benefits
- Organizational Benefits
- User Benefits
- Product or Service Benefits
- Process Benefits

Generate New Business Opportunities
- Quality Management Systems
- Innovation/Adaptability/Management
- Support of Entire Lifecycle
- Improved Business Cycle Time

Improve Corporate Communications
- Organizational Change
- Reliance on Paper
- Integration of Software Tools
- Standard Design Catalogs

Standardized Data Source
- User Search Capabilities
- People Benefits

Faster Customer Response Time
- Management of Product Data
- Reuse of Designs
- Fewer Errors
- Automated, Digital, Information Core

Process Definition
- Document Management
- Engineering Change Management
<table>
<thead>
<tr>
<th>Phase</th>
<th>Target Area</th>
<th>Key Performance Indicator</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan/Design</td>
<td>Business Performance Benefits</td>
<td>Generate New Business Opportunities</td>
<td>Number of RFPs responded to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality Management Systems</td>
<td>Number of RFPs awarded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Innovation/Adaptability/Management</td>
<td>Customer response time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support of Entire Lifecycle</td>
<td>Number of new customers captured by new product support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved Business Cycle Time</td>
<td>Improved Business Cycle Time</td>
</tr>
<tr>
<td></td>
<td>User Benefits</td>
<td></td>
<td>Revenue growth</td>
</tr>
<tr>
<td></td>
<td>Product or Service Benefits</td>
<td></td>
<td>Market share</td>
</tr>
<tr>
<td></td>
<td>Process Benefits</td>
<td></td>
<td>Number of new customers captured by new products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Product price paid by customers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Premiums due to being first-to-market</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Margins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of purchases due to being first-to-market</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Market capitalization</td>
</tr>
</tbody>
</table>
Summary
Past, Present, Future

• **Past**
 – Reviewed PLM Literature
 – Conducted Focus Groups
 – Interviewed Industry Experts
 – Developed PLM Assessment Model
 – Developed PLM Framework

• **Present**
 – Creating Metric Model
 – Identifying Metrics
 – Creating Self-Assessment Metric Survey
 – Testing and Revising Metric Survey

• **Future**
 – Conduct Survey Assessment
 – Data Analysis
 – Case Study Results and Conclusions
 – Publications, grants, consulting
 – Develop Diagnostic Tool
References

Acknowledgments

The authors wish to acknowledge the support:

• Center for Product Lifecycle Management Excellence, Purdue University, “PLM Metrics Project”
• Center for Advanced Manufacturing, Purdue University, “PLM Metrics Project”
• Department of Organizational Leadership and Supervision, Purdue University
• Society for Manufacturing Engineers - Education Foundation, SME-EF Grant #5004 for “Curriculum Modules in Product Lifecycle Management.”