®
Keith Lucas, DTO Modeling'
14 Aug, 2023

Strategic ‘Why’: Competing in Time

| Average time to reach 10C by year

Source: Patt, W. G. (2021). Competing in Time:
Ensuring Capability Advantage and Mission Success
through Adaptable Resource Allocation

e “It takes the US on average sixteen years to deliver
an idea to operational capability, versus fewer than
seven for China”

 “The PPBE'’s inflexibility increases the difficulty of
rapidly shifting funding to emergent innovations”’

kJ
Ln

)
L=}

« “Defense acquisition process and legacy defense
industrial base approach struggle to accommodate
timely adoption of these emerging technologies”

15 4

« “Competitive advantage in decision-centric operations
(whether budgeting or on the battlefield) comes from
the scale of available options, tempo of decision-
making, and superior decision processes’

13

Years from start to Initlal Operational Capabillty

Digital Transformation yields smarter, faster decision

making; but flexible funding and agility in HOW we o |Tamincte: .
. . 1345 =] 1985 Tﬁ-' "i":'lﬁﬁ 1593 EﬂEﬁ‘ 25115‘ 2025
resource is essential

Yaar af Inltial Operational Capability

DTO :

Revolutionize Our Processes via DMM

e Structure and Secure Our Data

for low friction, cross-organizational “
teamwork and decision-making é

w ? * Provide Access to DMM Tools to

equip our workforce for digital
operations with a dynamic toolbox

; DMM

Video

Provide
Access to
DMM Tools

Structure
and Secure
Our Data

+ Develop Digital Strategies to w
leave behind stale practices and —
pave the way for agile acquisition n

& sustainment \
Train Our

Digital
Workforce

Develop
Digital
Strategies

» Train Our Digital Workforce so
we are prepared to collaborate
with partners in a fully digital
ecosystem

Instill a
Digital-First
Culture

- Instill a Digital-First Culture to < <
revolutionize how AFMC does business in a O{(<\<l
constantly changing threat environment Q/“ 0

/ ® ' . odernize IT Infrastructure to
S@D ta\DO«\ Mod IT Infrastructure t

’gl continuously enable rapid enterprise
solutions

https://vimeo.com/800681746/4636469c5c

DMM In Action

Cross-Disciplenary
Collab & Communication
Across the Enterprise

Interoperability Between
Tools & Across Data Sets

Low Barrier of Entry

Simylatio®
& Data Analys*®

DTO

Challenge Areas for DMM

Aging IT Infrastructure and Difficult
Pathways for Upgrade

eObstacles drive slow digital adoption

Modern Data Analysis Tools have Limited
Availability on Gov’t Networks

eDifficult to extract salient data

eDifficult to present digestible knowledge

Dated But Critical Doc Based
Processes

DTO

eMultiple proprietary data formats
e0Open data formats are limited
eLimited portability between tools

Culture is Slow to

qesEArchitece,, Change

pgaseline eRequires additional costly, complex plugins
eEach modeling tool has its own solution

Cross-Disciplenary
Collab & Communication
Across the Enterprise

- o Difficult Hiring Processes for
nteroperaniir etween
Tools & Across Data Sets Gov’t Personnel

Low Barrier of Entry

eCannot interact w/ model in native tools

Sii jon
mulat eWorkforce requires extensive training

€ Data Analys*®
Lack of Trained Personnel in
Key Skillsets

eLack of interoperability between modeling & analysis tools
*MIBSE data formats become obstacles requiring extensive engineering effort

Digital Transformation Enterprise

Data
Management

Modeling &
Simulation

Software
Development

Open
Architecture

Open
Data

Workforce
Development

Roles Skillsets / Tasks
Executive Leadership Model Based Systems Engineering
Program Leadership Cost Modeling

Systoms Engineers Monte Carlo SIm

Program Managers Discrete Event Sim

Contracting Officers Artificlal Intelligence / Machine Learning
Test & Evaluation CAD Modeling

Logisticlans DevSecOps

Data Sclentists Cloud Infrastructure

Systoms Achitects Airworthiness / Nuclear Cert

Cyber Securlty Experts Physlcs Based Modeling

Software Engineers Cyber Certification

Schedulers Red /Blue Wargaming

Financlal Managers Data Management

Operations Research Analysts Electrical / Mechanical Engineering
Physlcists Software Engineering
Electrical / Mechanlcal Engineers Design of Experiments

Intelligence Community Project Management

Malntainers

Tralners

Software and Data

@AMEO

ENTERPRISE ARCHITECTURE
AP/ UPDM,/ DODAE/ MODAF/ NAF/ SYSL/ BTN/ SO

A Teamwork Cloud
SIEMENS
Teancentes Y/"”
Ar

'f__r'ﬂi sl

i
>

N

OCHES
A

IBM DOORS

o Py
a

;
+ .
iy tableau

O PyTorch 1
TensorFlow

) Studio

twork

-
®©
>
0
—
@y
m.
e,

_l{ e

PySysML2

Air Force Institute of Technology

Integrity - Service - Excellence

3

= —
\ =

SysML v2 Python Integration

Keith L Lucas @

Digital Transformation Office

6 Sep 2022 Acad. Advisor: Lt Col John Situ, Ph.D
keith.lucas.3@us.af.mil Tech. Advisor: Thomas Ford, Ph.D

DTO

SysML 2.0 Addresses Multiple Challenges

RS Iy, kA « Built on open, extensible, textual language

eOpen data formats are limited

o * APIs are well documented, freely available

oE Architecy,,
we : Tar 2 e z * Models can be expressed as source code
paseline eRequires additional costly, complex plugins
/°EaCh A NN R « Supports widely used version controlsoftware
(e.g. Git)
Cross-Disciplenary
Collab & Communication
Across the Enterprise
Interoperability Between
Tools & Across Data Sets
Low Barrier of Entry
A — . cC | data science tool Jupyt
P— eCannot interact w/ model in native tools an use general data science tools (e.g. Jupyter
— eWorkforce requires extensive training NB)

€ Data Analys'®

+ Compatible with more general STEM skillsets

eLack of interoperability between modeling & analysis tools * Inter_operablllty between tools is a core
*MBSE data formats become obstacles requiring extensive engineering effort requirement

* Well documented, FOSS project supports
community innovation

DTO

The Model Interoperability Problem

iiiintegrating MBSE Models is Hard! |

File formats are mostly proprietary,
> & current open formats are broken

NN N N NN N NN NN NN NN NN NN NN NN NN N

The Digital Thread Breaks at the
pro Interface with MBSE Models

Interoperability: A SysML v2 Requirement

SysML v1 is an extension of UML2.0 SysML v2 is an extension of KerML

Graphical language founded on top of a

Primarily defined as a graphical language textual source language and RESTful API

Tool vendors built proprietary, black Interoperability with other tools is a
box computational back ends and standards requirement in the SysML v2 RFP

Low Interoperability Locks Gov into Modeling Tools, Siloes
Mudels from Analysis Tools, & Limits Insight & Knowledge

PySysML2: Python Interoperability Pathfinder

But Why Python?

PYSysML2 Goals

Python supports a vast ecosystem of
data science, simulation, & analysis tools

PySysML2 provides a Pythonic wrapper
for the SysML v2 textual modeling language

Python is among the most widely used,
readable, & flexible programming languages

Most STEM grads have some Python training
and experience using it for analysis

Python is free and open source, while also
strongly supported by industry and academia

DTO

PySysML2 interfaces SysML v2 models with
the Python data science ecosystem

PySysML2 is designed to be maintainable &
extendable as SysML v2 changes and grows

PySysML2 is free and open source, hoped to
drive more MBSE open source development

PySysML2 Use Cases

— Python Tree data

ﬂ]:"l structure for SysML v2

& & model implementation

ONTLR

Language recognition
& grammar parsing

¢

Multidimensional arrays
for numerical analysis
Nump

<

: I Dataframe datastructure
for relational analysis

DTO

JSON]}
" Model serialization
for transfer & storage
=R | Model tabularization
[csv|B| for analysis

' N — 5 MATLAB
compatibility

SysML V2 Example

SysML v2 Graphical Model SysML v2 Graphical Model
. Lines 1-66 Lines 67-123

TTRPG oTc
\ - Line SysML v2 Textual Code Line SysML v2 Textual Code
Structure ERTavioe 1 | // References ----------o oo 67 part def 'AA Battery Duracell Quantum' specializes 'Battery' {
2177 Intro to the SysML v2 Language-Textual Notation.pdf 68 attribute :> isRechargeable : Boolean - false;
ERNZ https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/doc 69 attribute :> 'Battery Type' : String = "AA";
7 | import 15Q::*; 70 attribute :> name : String = "Duracell Quantum";
TS 5 | import ISQSpaceTime; 71 attribute :> avg_voltage V : Real = 1.5;
e 5 | import ScalarValues::*; 72 attribute :> avg_capacity_mAh : Real = 2350.0;
7 73 }
3 | package TTRPGeToken{ 74 7/ Specialize using the "subset" symbol
9 doc overview /* 75 part def 'Bicool Round LCD IPS Display GC9A@1' :> 'LCD Display' {}
b 10 * The TTRPGeToken is a device used for displaying NPC/PC 76
B D aca N sk Bty 11 * avatars in a physical token that can be used on a tabletop 77 part def 'TTRPG eToken System' {
12 */ 78 part 'controller board' : 'Controller Board';
13 doc /* TODO: include links to remotely hosted images */ 79 part 'lcd display' : 'LCD Display’;
14 doc /* TODO: include links to public facing documentation */ 80 part 'battery' : 'Battery'[1..2];
i:ﬁ 15 comment RevComment_1 /* TO: Maatlock: Please evaluate your vigorous use of 81 }
16 * commenting in the TTRPGeToken model. Comment variety 82 part def 'TTRPG eToken System Prototype’ {
17 * in the language seems... excessive. Don't get 83 part 'controller board' : 'Raspberry Pi Pico Wireless';
18 * carried away! 84 part 'lcd display’ : 'Bicool Round LCD IPS Display GC9A1';
19 */ 85 part 'battery' : 'AA Battery Duracell Quantum';
B 20 package Structure{ 36 ¥
21 doc overview /* Structural elements of model */ 87 Y
22 7/ This is an example of composite structures, [1] pg. 16 88 package Behavior{
. [EEPart (Abstract Component) 23 part def 'WiFi Component ; 89 part def ‘User’ {}
Raspberry Pi Pico Wireless : Controller Board B Part (Abstract System Context) 24 part def 'Bluetooth Component'; 90 use case def 'Change displayed image on eToken'{
oy [—IPart (Prototype Component Context) 25 part def 'Integrated Wireless Chip' { 91 actor 'user' : 'User';
o Bl eaes iy B Part (Prototype System Context) 26 attribute name : String; 92 objective {
27 part wifiComponent : 'WiFi Component' { 93 doc /*
28 attribute 'WiFi Frequency' : Real; 94 * The user changes the displayed image on the eToken to one
29 attribute 'WiFi Protocol’ : String; 95 * that is currently stored in storage
30 } 96 */
31 part btComponent : 'Bluetooth Component'{ 97 }
32 attribute 'BT Protocol' : String; 98 }
33 ¥ 99 Use case def 'Remove existing image form eToken'{
34 ¥ 100 objective {
35 part def 'Controller Board' { 101 doc /*
36 part def 'wChip' specializes 'Integrated Wireless Chip'; 102 * The user deletes an image from the eToken currently
37 attribute 'RAM_kb' : Integer; 103 * stored in storage
38 attribute 'Primary Interface' : String; 104 */
39 attribute 'Secondary Interface' : String; 105 }
10 attribute 'Bluetooth Capable' : Boolean; 106 actor 'user' : 'User';
41 Y 107 }
22 part def 'LCD Display' {} 108 Use case def 'Load new image to eToken'{
23 part def 'Battery' { 109 objective {
24 attribute isRechargeable : Boolean; 110 doc /*The user uploads a new image to the eToken's storage*/
45 attribute 'Battery Type' : String; 111 }
46 attribute name : String; 112 actor 'user' : ‘'User';
47 attribute avg_voltage_V : Real; 113 }
48 attribute avg_capacity_mAh : Real; 114 use case def 'Use eToken as game piece'{
49 } 115 objective {
59 part def 'Raspberry Pi Pico Wireless' specializes 'Controller Board' { 116 doc /*The user places the eToken on the board to use as a
51 doc info /*https://en.wikipedia.org/wiki/Raspberry_Pi*/ 117 *game piece
B 52 part def wChip_PiPicoW :> wChip{ 118 */
g . 53 attribute redefines name : String = "Infineon CYWA43439"; 119]
3 :-_, 54 part wifiComponet_PiPicoW :> wifiComponent{ 120 actor 'user' : 'User';
u=: E 55 attribute redefines 'WiFi Frequency': Real = 2.4; 121 }
= 3 56 attribute :> 'WiFi Protocol': String = "IEEE 802.11 b/g/n"; 122 }
| 57 1231}
58 part btComponet_PiPicoW :> btComponent{ 124
59 attribute redefines 'BT Protocol' : String="Bluetooth 5.2"; 125
60 } 126
61 } 127
62 attribute :> 'RAM_kb' = 264; 128
63 attribute :> 'Bluetooth Capable' = true; 129
64 attribute :> 'Primary Interface’ = "USB 1.1°; 130
65 attribute redefines 'Secondary Interface' = "SPI";
66 }

package 'System'{
package 'PC'{
part def 'RAM';
part def 'HD';
part def 'CPU';
}

package 'Peripherals’{
part def 'Monitor';
part def 'Mouse';
part def 'Keyboard';

packagel[s[yls[t]e[m
“{packagel'Plcl[{
partdef['RIAM["|;|p
artdef ' HDl' ;|plajr
tdef ' cPlul;|}plac
Kage ' Pelrlilphlelr|a
1s ' {par|[tde#| Mo
nitor ' ;lpalrt|delf
"Mouse ' plar|t|de
f ' Keyblolar|d"[;[}}
package . systen

' [package
pC .

{ part def

. R T

5 part def

g o g
part def
Py .

5 3 package

. ip g

{ part def

. Monitor .

5 part def
Mouse .
part def
Keyboard .

PySysML2 Software Engineering

SysML v2 Grammar

[Grammar Declaration | | grammar SysML2;

3 // Model, i.e. collection of elements to EOF, e.g. namespaces, features, etc
model: element* EOF;

// An element is anything that can be a part of a model

element : namespace | feature | comment | doc | statement;

// Namespaces, i.e. elements with a scope defined by curly braces
namespace : sysml2_package | part | use_case_def | comment | doc;
sysml2_package: KW_PACKAGE ID '{' namespace* '}';
// Parts
part_blk: (feature | comment | doc | part_def_specializes);
part: (part_def | part_def_specializes);
part_def: ((KW_PART KW_DEF ID '{' part_blk* '}')|(KW_PART KW_DEF ID';'));
part_def_specializes: KW_PART KW_DEF? ID

(KW_SPECTALIZES | KW_SYM_SUBSETS) ID

(', ID)*? ('{' part_blk* '}' | ';');
// Use Cases
use_case_blk: part_blk | objective_def;
use_case_def: KW_USE KW_CASE KW_DEF ID '{' use_case_blk* '}';
part_objective_blk: doc;
objective_def: KW_OBJECTIVE '{' part_objective_blk '}';

// Features, i.e. elements that can be part of a namespace
feature : feature_attribute_def | feature_attribute_redefines

| feature_part_specializes | feature_part_specializes_subsets

| feature_item_def | feature_item_ ref

| feature_actor_specializes;
// Attributes
feature_attribute_def: KW_ATTRIBUTE ID ':' TYPE ';';
feature_attribute_redefines: KW_ATTRIBUTE

(KW_REDEFINES | KW_SYM_REDEFINES | KW_SYM_SUBSETS)

ID (":" TYPE)? '=" CONSTANT ';';
feature_part_specializes: KW_PART ID ':' ID MULTIPLICITY?
(5" | "{* part_blk* '}");

feature_part_specializes_subsets: KW_PART ID ':' ID MULTIPLICITY?
(KW_SUBSETS | KW_SYM_SUBSETS) ID';';

feature_item_def: KW_ITEM ID';";

feature_item_ref: KW_REF? KW_ITEM ID ':' ID';"';

feature_actor_specializes: KW_ACTOR ID ':' ID MULTIPLICITY?';';

// SysML2 Comments and Documentation

comment : comment_unnamed | comment_named | comment_named_about;

comment_unnamed: COMMENT_LONG;

comment_named: KW_COMMENT ID COMMENT_LONG;

model

element <EOF>

namespace

smi2 package

package ‘System' { Mme‘space
sysmi2 package
package FC ramegoee namespace

part pat

part def part def

pat def RAM | pat def HD' |

namelspace } package Peripherals’ { namespace namespace namespace }

part

part def

pat def CPU

namespace }

sysmi2_package

| |
pat i o

part et part def part def

pat def Montor ; pat def Mouse' ; pat def Keyboard |

comment_named_about: KW_COMMENT KW_ABOUT ID COMMENT_LONG;

doc : doc_unnamed | doc_named;

doc_unnamed: KW_DOC COMMENT_LONG;

doc_named: KW_DOC ID COMMENT_LONG;

// Statements

statement : import_package;

import_package: KW_IMPORT ID (KW_SYM_FQN ID)* (KW_SYM_FQN '*')2 ';';

// Keywords and Tokens
KW_ABOUT: 'about';

KW_ACTOR: 'actor';
KW_ATTRIBUTE: 'attribute’;
KW_CASE: ‘'case';

KW_COMMENT: 'comment’;

KW_DEF: "def';

KW_DOC: 'doc';

KW_IMPORT: 'import';

KW_ITEM: ‘item';

KW_OBJECTIVE: 'objective';
KW_PACKAGE: 'package’;
KW_PART: ‘part’';

KW_REDEFINES: 'redefines’;
KW_REF: 'ref';

KW_SPECIALIZES: 'specializes’;
KW_SUBJECT: 'subject’;
KW_SUBSETS: 'subsets’;

KW_USE: 'use';
KW_SYM_FQN: '::';
KW_SYM_REDEFINES:
KW_SYM_SUBSETS: ':>';
CONSTANT: INTEGER | REAL | BOOL | STRING | NULL;

TYPE: 'Integer' | 'Real' | 'Boolean' | 'String';

// Characters

ID: '\'" [a-zA-Z_][a-zA-20-9_1* "\'" | [a-zA-Z_][a-zA-20-9_]*;
INTEGER: [0-9]+;

REAL: [@-9]+ '.' [@-9]+;

BOOL: 'true' | 'false';

STRING: '"' (ESC | ~ ["\\])* ""';

MULTIPLICITY: '[' INTEGER '..' INTEGER ']';
fragment ESC: '\\" (["\\/bfnrt] | UNICODE);
fragment UNICODE: 'u' HEX HEX HEX HEX;
fragment HEX: [@-9a-fA-F];

NULL: 'null’;

Ws: [\t\r\nl+ -> skip;

NOTE: '//" ~[\r\n]* -> skip;

COMMENT_LONG: '/*'.*2'*/";

PySysMLz Software Engineering

The ANTLR4 based grammar
parser is the heart PySysML2
[Readin |
1/ Character
>
BSETe Small subset of SysML v2
supported, but easily extensible
Je
\""‘y
aaaaaaa General Processing Workflow
e 1. Parse tree is generated from SysML v2
SeE e textual source
3 e trom. 2. Model is built from the parse tree as a
Tokens u .
\ / Python object in memory

3. From this point, model may be
transformed to one of many
interoperable data structures

¥ Python Tree data
=+ structure for SysML v2
- T por """ model implementation

s s s sogr o] Lt o] [st s 1o o] wngrin] (oo cmmmatn s e vars | e 1]

| [oegoan] vt smensoes e e g

;

i
vaz| [sctipazs|
) [

/ '
wocatgs | [wtinga |/ || [rcompone mcovaz | [rase g

T
[

Secondary Interface@4d 32

Dataframe datastructure
for relational analysis

< Multidimensional arrays

N‘== for numerical analysis

e
metadata

-~ =
=

metadata metadata
metadata

S = P
=

= metadata

metadata

Model serialization for
transfer & storage

SysML v2 Overview

Next generation of Systems Modeling Language

* Addresses many systemic issues of SysML v1.x

* Development driven by the following requirements:
* Precision and expressiveness of the language
* Consistency and integration among language concepts
* Interoperability with other engineering models and tools
» Usability by model developers and consumers
« Extensibility to support domain specific applications
* Migration path for SysML v1 users and implementors

SysML v2 Overview

SysML v2 is coming... quickly

 Tech spec approval completed, OMG conference, Feb 2023

» Adoption of “beta” standard expected in Summer 2023 (soon)
* Final adoption expected in 2024...

* OMG will begin sunsetting SysML v1.x (latest version 1.7)

SysML v2 Overview

* Includes both graphical & textual modeling languages, & a
modern, standardized API

exhibit state vehicleStates parallel { «view» Vehicle State:
state operatingStates {

entry action initial; «exhibit state»

state fo{ vehicleStates

state on { parallel
entry action performSelfTest;
do providePower; operatingStates
exit action applyParkingBrake;

constraint { } «state»
1 on
transition initial then off;

actions

Stakeholders Simulation
Tools

transition off_To_on entry perform selfTest
first off do providePower

exit applyParkingBrake
accept ignitionCmd:IgnitionCmd via ignitionCmdPort

constraints
if ignitionCmd.ignitionOnOff==IgnitionOnOff::on i . lani y iani
e g = i iCmd : IgnitionCmd [iCmd.ignitionOnOff {electricalPower 00 W]}
en on;

transition on_To_off

first on healthStat
accept ignitionCmd:IgnitionCmd via ignitionCmdPort ea ates

if ignitionCmd.ignitionOnOff==IgnitionOnOff::off|
then off;

degraded
state healthStates {

entry action initial;
state normal;
state degraded;

MBSE Tools Data Analysis
Tools

Textual Modeling Graphical Modeling Open API
Language Language

SysML v2 Overview

* Includes both graphical & textual modeling languages, & a
modern, standardized API

exhibit state vehicleStates parallel { «view» Vehicle State:
state operatingStates {

entry action initial; «exhibit state»

state fo{ vehicleStates

state on { parallel
entry action performSelfTest;
do providePower; operatingStates
exit action applyParkingBrake;

constraint { } «state»
1 on
transition initial then off;

actions

Stakeholders Simulation
Tools

transition off_To_on entry perform selfTest
first off do providePower

exit applyParkingBrake
accept ignitionCmd:IgnitionCmd via ignitionCmdPort

constraints
if ignitionCmd.ignitionOnOff==IgnitionOnOff::on i . lani y iani
e g = i iCmd : IgnitionCmd [iCmd.ignitionOnOff {electricalPower 00 W]}
en on;

transition on_To_off

first on healthStat
accept ignitionCmd:IgnitionCmd via ignitionCmdPort ea ates

if ignitionCmd.ignitionOnOff==IgnitionOnOff::off|
then off;

degraded
state healthStates {

entry action initial;
state normal;
state degraded;

MBSE Tools Data Analysis
Tools

Textual Modeling Graphical Modeling Open API
Language Language

Key Features Enabled by SysML v2

 Interoperability across Modeling, Simulation, and Analysis Tools: SysML v2
defines a common API and language implementation that all tool vendors must
adopt, rather than leaving the implementation to the individual tool vendors. The
API will support web-based interrogation of models across tools. Additionally, a
model serialization standard has been built from the ground up in JSON, ensuring
greater consistency across tools

 Managing Models as Code: SysML v2 implements a “textual” modeling
language similar to a programming language. While all models can be
expressed graphically as expected, they can also be expressed as human
readable text— meaning they can be managed as code

 Built-in Analytic Capability and Geometric Representation: SysML v2
includes numerical / quantitative analysis capability in the base
implementation, including unit standardization and conversion, in addition
to the ability to define simple geometric shapes via spatial coordinates

 Open-Source Implementation: A prototype implementation of SysML v2
has been released to the public for free, including textual language
parsing and graphical model representation. While the major tool vendors
will provide additional capability, the open implementation is robust

DTO

SysML v2 Style Guidanc

+ A Style Guide is a comprehensive set of standards agreed upon by an org...
« But a Style Guide for one org may not be compatible with another’s org’s needs

« Orgs using SysML v2 must adhere to its API, Textual, and Graphical Languages...
« But they will choose the best Style Guide to fit their needs or may even build their own

« As a community of practice, we can adopt a few simple common conventions
« Common conventions, while unenforceable, would be advantageous for all Style Guides
« SysML v2’s similarity to coding allows us to learn from other programming languages

» Python’s recommended Style Guide (“PEP 8”) is relatively small and general, covering only
the basics:

» Code Layout; Variable Naming; Commenting & Documentation; and Common
Programming Practices

» It's guiding principle is that “code is read much more than it is written”

* Models are viewed much more than they are built— users vastly outnumber architects

« As in Python, any style conventions should prioritize readability, interoperability, & usability

- Style Recommendations should be simple, be generalizable, and comply with the API

« This makes adoption much more likely— because unadopted style guides are wasted effort

DTO

MBSE Terms of Art

 Modeling Language — a formalized, graphical or textual notation used to represent system models in MBSE.
Modeling languages provide the syntax, semantics, and symbols needed to create models that can be easily
understood and shared among stakeholders

 Modeling Framework — a structured approach, methodology, or environment that supports the creation,
management, and analysis of models in MBSE. It defines the organization, relationships, and conventions needed
for effective modeling

« Modeling Standard — defined as a formal agreement documenting generally accepted specifications or criteria for
products, processes, procedures, policies, systems and/or personnel

» Modeling Profile — a specific set of customizations or extensions to a modeling language, designed to address the
unique needs of a particular domain or industry. Profiles can include new modeling elements, stereotypes, or
constraints that tailor the modeling language to a specific context or set of requirements

» Architecture — is the structure of components, their relationships, and the principles and guidelines governing their
design and evolution over time.

« Reference Architecture — an authoritative source of information about a specific subject area that guides and
constrains the instantiations of multiple architectures and solutions

 Government Reference Architecture — a Government-owned, authoritative source of information about a specific
subject area that guides and constrains the instantiations of capability architectures and solutions

MBSE Terms of Art

 Modeling Language — a formalized, graphical or textual notation used to represent system models in MBSE.
Modeling languages provide the syntax, semantics, and symbols needed to create models that can be easily
understood and shared among stakeholders

 Modeling Framework — a structured approach, methodology, or environment that supports the creation,
management, and analysis of models in MBSE. It defines the organization, relationships, and conventions needed
for effective modeling

« Modeling Standard — defined as a formal agreement documenting generally accepted specifications or criteria for
products, processes, procedures, policies, systems and/or personnel

» Modeling Profile — a specific set of customizations or extensions to a modeling language, designed to address the
unique needs of a particular domain or industry. Profiles can include new modeling elements, stereotypes, or
constraints that tailor the modeling language to a specific context or set of requirements

» Architecture — is the structure of components, their relationships, and the principles and guidelines governing their
design and evolution over time.

« Reference Architecture — an authoritative source of information about a specific subject area that guides and
constrains the instantiations of multiple architectures and solutions

 Government Reference Architecture — a Government-owned, authoritative source of information about a specific
subject area that guides and constrains the instantiations of capability architectures and solutions

Modeling Languages

+ Systems Modeling Language 1.x (SysML) — a general-purpose graphical modeling language specifically
designed for systems engineering applications. It extends the Unified Modeling Language (UML) with additional
diagrams & constructs to better represent the system's structure, behavior, & requirements

« Systems Modeling Language 2.0 (SysML v2) — evolution of SysML 1.x modeling language, offering
enhancements in usability and interoperability. Key features include the addition of a textual language for more
intuitive model representation, a RESTful API for seamless tool integration, & improvements in model interoperability
to facilitate better collaboration & exchange between different modeling and simulation environments & tools

« Architecture Analysis and design Language (AADL) — textual & graphical modeling language designed for the
analysis, specification, & design of real-time, safety-critical, & performance-critical systems. Provides rich set of
modeling constructs for structure, behavior, & properties of software, hardware, and hybrid systems

» Architecture Analysis and design Language (AADL) — textual & graphical modeling language designed for the
analysis, specification, & design of real-time, safety-critical, & performance-critical systems. Provides rich set of
modeling constructs for structure, behavior, & properties of software, hardware, and hybrid systems

» Business Process Model & Notation (BPMN) — graphical modeling language designed for representing business
processes in a workflow format. Provides standardized set of symbols & notation to describe the flow of activities,
events, & decisions within a business process for communication & collaboration between stakeholders

Modeling Frameworks, Profiles, & Standards

» Unified Architecture Framework (UAF) — MBSE framework that supports the modeling & analysis of complex
systems, systems of systems, and enterprises. Built on top of SysML, UAF provides an integrated approach to
address the architectural, operational, and technical aspects of a system

» SysML-UAF Profile — MBSE profile that extends SysML to support the UAF framework, including stereotypes,
elements, & relationships to model architectures and interdependencies of systems and enterprises

* Dept. of Defense Architecture Framework (DoDAF) — MBSE framework used by the United States DoD for
architecting & managing complex systems & enterprises. Defines a standardized set of views, products, & guidelines
for describing, analyzing, & communicating system architectures. Primarily used with UPDM

* Ministry of Defense Architecture Framework (MoDAF) — like DoDAF; used mainly in UK/ NATO defense models

» Unified Profile for DODAF and MoDAF (UPDM) — modeling profile that integrates DoDAF & MoDAF. Provides a
SysML-based notation for creating DoDAF / MoDAF compliant models. Enables DoDAF / MoDAF interoperability

* Open Services for Lifecycle Collaboration (OSLC) — set of open standards & specifications that enable tools,
data, & processes to be integrated across the entire system lifecycle. Promotes collaboration & interoperability
across different tools and teams

* Functional Mock-up Interface (FMI) — open standard that defines a standardized API for model exchange and co-
simulation of models across different tools and platforms

« XML Metadata Interchange (XMI) — open standard specficiation for exchanging MBSE data elements between
modeling tools and environments. Defines rules for representing primarily UML & SysML in a serialized XML format,
enabling sharing and integration of models across different tools and platforms

DTO Modeling Areas of Interest

Research MBSE data interoperability across tools and architectures
» Support development and adoption of open data formats for MBSE
» Support development and adoption of MBSE modeling standards

Research MBSE integration between engineering and functional groups
» Unleash actionable knowledge from MBSE models for PMs, schedulers, and FMers
« Simulation, analysis, big data analytics harnessed to and driven by MBSE authoritative source of truth

Model Based Acquisition update to Unified Architecture Framework (UAF)
* Integrate defense acquisition and sustainment concepts into UAF
» Work with DAF orgs (AFLCMC), Object Modeling Group (OMG)

Early SysML v2 Integration and Adoption
» Support development of FOSS SysML v2 applications
* |dentify and support early adopters and pathfinders of SysML v2 across USAF and USSF

Alternatives to current leading MBSE tools
» Survey existing landscape of MBSE modeling tools, including COTS and FOSS
« Identify and support orgs willing to investigate alternative solutions

	Slide Number 1
	Strategic ‘Why’: Competing in Time
	Slide Number 3
	DMM In Action
	Challenge Areas for DMM
	Digital Transformation Enterprise
	Slide Number 7
	PySysML2
	Slide Number 9
	SysML 2.0 Addresses Multiple Challenges
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	SysML v2 Overview
	SysML v2 Overview
	SysML v2 Overview
	SysML v2 Overview
	Key Features Enabled by SysML v2
	SysML v2 Style Guidance
	Slide Number 25
	MBSE Terms of Art
	MBSE Terms of Art
	Modeling Languages
	Modeling Frameworks, Profiles, & Standards
	DTO Modeling Areas of Interest

