Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems

Dr. Michael Grieves Florida Institute of Technology Center for Advanced Manufacturing and Innovative Design (CAMID)

Copyright 2003-2015, Michael W. Grieves, LLC

Virtually

AIAA – CASE

Complex Aerospace Systems Exchange

Virtually Perfect Franz-Josef Kahlen Shannon Flumerfelt Anabela Alves *Editors*

Transdisciplinary Perspectives on Complex Systems

New Findings and Approaches

Problem with Metaphors

- Glosses over substantive differences between source and target domains
- Hinders work on detail execution issues
- Leads to misleading assumptions
- Assumes that everyone has same cognitive framework

Product Lifecycle – 4 Phases

Production

Disposal

Operations

Figure 2

Copyright 2003-2015, Michael W. Grieves, LLC

Creation

Digital Twin Model

Digital Twin Environment

Digital Twin Through the Lifecycle

Digital Twin Through the Lifecycle

Digital Twin Types

• Digital Twin Prototype (DTP)

PRODUC

Virtually Perfect

Interrogative

Digital Twin Aggregate (DTA)

Prognostics

Waterfall Model

Spiral Model

Digital Twin Implementation Model

Real vs. Virtual Costs

Obstacles

- Organizational siloing / culture
- Physical world knowledge
- Magnitude of possible system states

Possibilities

- Usage feedback to design
- System front-running

CAMID

"The ultimate vision for the digital twin is to create, test and build our equipment in a virtual environment. Only when we get it to where it performs to our requirements do we physically manufacture it. – John Vickers, NASA Principal Technologist, The Economist

Additive Manufacturing SAM-CT Framework

AM DB Architecture

Machines ID Manufacturer Model

-		-
••		
L . #4		
	J.	
	1	

	P
	A
TUTE OF	G
*	S
	X
27	Y
A S	Ζ
* 1958 *	Ρ

Mode
Power (W)
AM Process
General Material Type
Specific Material Type
X (in)
Y (in)
Z (in)
Price (USD)
Operation Cost \$/hr
Maintenance Contract \$/yr

PRODUCT

Images For fee add ons: Brochures Referrals Demonstration videos Training videos

Add ons:

Machine-Material Systems

ID Machine1

Material

Min Hole dia mm

Min Wall Thickness mm

Min Column X-section mm

Min Groove Width mm Angled Surface Min Ra um

Deposition Rate kg/hr

Min UTS MPa

Min Tensile Modulus MPa

Min Elongation to Break %

Min Flexural Strength MPa

Absolute Accuracy mm/m

Expected Iterations

Material Reuse %

Materials
ID
company
Material
Туре
Price \$ per kg
Shore Scale
Hardness
UTS_MPa
Tensile Mod MPa
Elongation to failure_%
Flexural Strength MPa

Questions/Comments mgrieves@fit.edu