Digital Human Modeling for PLM

H. Onan Demirel¹ and Prof. Vincent G. Duffy^{1,2}

School of Industrial Engineering¹ and Agricultural & Biological Engineering²

Overview

- Introduction/Background
- DHM in Manufacturing
- DHM in PLM
- Catia V5 & UGS Jack Integration for PLM
- Future Work
- Discussions

What is DHM?

- Digital human models (DHM)
 - A digital representation of the human inserted into a simulation or virtual environment to facilitate prediction of safety and/or performance
 - Includes a visualization & math/science in background (Sundin, 2006)

Potentials of DHM

- Has potential to enable engineers
 - incorporate ergonomics & human factors engineering principles earlier in the design process (Duffy, 2004; Chaffin, 2005)
- Providing real cost savings
 - \$8.8 Million avoided in injury costs
 - Brazier, et al. (2003)

Potentials of DHM

- Motion capture can be used to drive the DHM and facilitate *reduction of injuries* & comfort prediction through *virtual interactive design* of work stations and some new products
- This method *allows manufacturers to predict* potential risk before production begins.

Applications of DHM

Prediction & Reduction of Injuries

Automotive Design

Aerospace Design

Work Environment Simulation

Simulations & Training for Surgeons

Cognitive Models

DHM in PLM

Integration of PLM and DHM

- Increases the engineering design and analysis capabilities
- Improves the product ergonomics
- Enables human-machine virtual reality applications
- Provides cost and time savings

Integration Between Catia V5 & UGS Jack

Applied Human Model

DHM Analysis

Integration Between Catia V5 & UGS Jack

Driver Comfort Analysis

Scottere Some Andres	13			
Constant Data Security:	Porter (1990)	1		
Conduct Raisege				
52 Show Kange Value	eri			
				are fur service
. Here	d Fiendon .		-10.7.0	26 7.0
Upper Arris Fiesd	ion Rhght .		18 10.0	78 50.0
Upper Ares Fie	nion Left		15 30.0	75 80,0
Ellistwi Nuchas	ed PopM		86 129.0	164 128.0
Ellipse Arch	eter let		88 128.8	364 128.8
Trunki Th	igh Hight		98 101.8	115 101.0
Trurk 1	high Left		90 101.0	115 101.0
Eites Bricket	es regre		99 LSL.8	130 111.0
Files Inch	Ided Laft		99 121.0	130 111.0
Foot Call Menue	ed roget		40 93.0	113 93.0
Post Car son	tino Cart B	CONTRACTOR STREET	1 40 4010	112 31.0
	-80 +60 -28	0 -20 +40 +80		
	Angle Value	Ratative to Mode		
2 per	Tot Reference	Cha Falserun		
			-041	
	T Appared to File	1.000		

Condoct Assessment			
Human Ituman			10
Analysis [Joint Angles]			100
Angle	Right		Loft
Head Flexion		6.0	
Head Lateral		0.0	
Head Flotation		0.0	
Upper Arm Fleston	46.7		49.2
Upper Am Elevation	10.2		15.5
Humeral Botation	-16.9		-19.7
ERiove Included	129.4		132.7
Fore-arm Twist	73.5		59.9
Wrist Ulmar Deviation	(3.3.		-0.7
What Fleskov	6.5		16.2
Torso Pseckrie	1000 0	24.1	100.0
Trunk Traps	100.7		35.6
Those Becalicon	34.2		320
Erope Trick adapt	193.9		334.0
Foot Call Included	96.G		07.9
Angle Definitions			
Urage	Reports	ACTIVE	Dismiss

Occupant Packaging Report

Vehicle Code: Comfort Assessment Analyst: H. Onan Demirel Department: Purdue Date: 08/07/2006 Comments: Male_Driving_Posture

Human Figure Posture Details:

Comfort ratings based on: Porter (1998)

Angle	Right		Left
Head Flexion		6.0	
Head Lateral		0.0	
Head Rotation		0.0	
Upper Arm Flexion	46.7		49.3
Upper Arm Elevation	18.2		15.5
Humeral Rotation	-16.9		-19.7
Elbow Included	129.4		132.7
Forearm Twist	73.5		59.9
Wrist Ulnar Deviation	-3.3		-0.7
Wrist Flexion	6.5		16.2
Torso Recline		24.1	
Trunk Thigh	100.7		95.6
Leg Splay	11.2		5.4
Thigh Rotation	-14.7		-12.6
Knee Included	133.3		114.8
Foot Calf Included	96.6		87.9

Green = within comfort range Yellow = outside of comfort range Black = not part of Porter (1998) data source

Comfort ratings based on: Porter (1998)

Final Product

A Future Application

Biodynamic Response of shipboard sitting subject to ship shock motion (Z. Zong, K.Y. Lam)

- Underwater shock produced by an underwater explosion remains one of the biggest threats to ships and shipboard personnel.
- What is an underwater shock?
 - Extremely high acceleration
 - Very short duration.

Test Set-up

Lumped Parameter System

- M = Unit Mass
- K = Spring
- C =Damper
- Y = Displacement
- i = Body Parts

Fig. 1. Simplified mechanical system representing the human body sitting upright in a chair subjected to vertical shock.

Results

- The risk for the pelvis injury is higher than the other parts.
- The part in direct contact with the structure is of high injury risk.
- The lumped parameter model (multi-degrees of freedom) is an improved way over SDF (single-degree-of-freedom)

Discussions

- 3D FEM (finite-element-model) is a better method over compared with two methods.
 - Human body is very complicated, more data and parameters needed to construct a 3D FEM model.

Discussions

 Isolation of the part of the body from direct contact with the structure (using isolator or cushion) may significantly reduce the injury risk.

Any questions?

