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ABSTRACT 

 

This paper presents a new approach for automated compliance checking in the 

construction domain. The approach utilizes semantic modeling, semantic Natural 

Language Processing (NLP) techniques (including text classification and information 

extraction), and logic reasoning to facilitate automated textual regulatory document 

analysis and processing for extracting requirements from these documents and 

formalizing these requirements in a computer-processable format. The approach 

involves developing a set of algorithms and combining them into one computational 

platform: 1) semantic machine-learning-based algorithms for text classification (TC), 

2) hybrid syntactic-semantic rule-based algorithms for information extraction (IE), 3) 

semantic rule-based algorithms for information transformation (ITr), and 4) 

logic-based algorithms for compliance reasoning (CR). This paper focuses on 

presenting our algorithms for ITr. A semantic logic-based representation for 

construction regulatory requirements is described. Semantic mapping rules and 

conflict resolution rules for transforming the extracted information into the 

representation are discussed. Our combined TC, IE and ITr algorithms were tested in 

extracting and formalizing quantitative requirements in the 2006 International 

Building Code, achieving 96% and 92% precision and recall, respectively.  

 

INTRODUCTION 

 

Manual regulatory compliance checking of construction projects is costly, 

time-consuming, and error-prone. Automated compliance checking (ACC) is 

expected to reduce the time, cost, and errors of compliance checking. Previous 
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research (e.g. Tan et al. 2010, Eastman et al. 2009, Lau and Law 2004, Garrett and 

Fenves 1987) and software development efforts (e.g. Solibri 2011) have undoubtedly 

paved the way for ACC in the architectural, engineering, and construction (AEC) 

industry. However, these efforts are limited in their automation and reasoning 

capabilities; existing ACC systems require manual effort for extracting requirements 

from textual regulatory documents (e.g. codes) and encoding these requirements in a 

computer-processable format. To address this gap, the authors are proposing a new 

approach for ACC (Zhang and El-Gohary 2012). It utilizes semantic modeling, 

semantic Natural Language Processing (NLP) techniques (including text 

classification and information extraction), and logic reasoning to facilitate automated 

textual regulatory document analysis (e.g. code analysis) and processing for 

extracting requirements from these documents and formalizing these requirements in 

a computer-processable format. The approach involves developing a set of 

algorithms and combining them into one computational platform: 1) semantic 

machine-learning-based algorithms for text classification (TC), 2) hybrid 

syntactic-semantic rule-based algorithms for information extraction (IE), 3) semantic 

rule-based algorithms for information transformation (ITr), and 4) logic-based 

algorithms for compliance reasoning (CR). In this paper, we focus on presenting our 

algorithms for ITr.  

 

BACKGROUND  

 

Natural language processing (NLP) is a field of artificial intelligence (AI) that 

is intended to enable computers to analyze and process natural language text or 

speech in a human-like manner. Examples of NLP techniques include tokenization, 

part-of-speech (POS) tagging, named entity recognition, and co-reference resolution 

etc. (Marquez 2000). Information extraction (IE) is a subfield of NLP that aims at 

extracting targeted information from text sources to fill in pre-defined information 

templates. In our proposed ACC approach, we utilize NLP techniques because 

construction codes and regulations are represented in unstructured text format. NLP 

techniques will facilitate the analysis and processing of these codes and regulations 

for extraction and formalization of requirements/rules.  

 

PROPOSED AUTOMATED COMPLIANCE CHECKING APPROACH 

 

The authors are proposing a six-phase, iterative approach for extracting 

requirements from textual regulatory documents and formalizing these requirements 

in a computer-processable format (Figure 1). 
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Figure 1. Proposed approach. 

 

Phase 1 – Information representation. We represent the requirements in 

construction regulations as first order logic-based axioms. Our representation is 

limited to Horn-Clause-type axioms to facilitate further reasoning using logic 

programs (logic programming can only represent sentences of the form of a Horn 

Clause). “Horn clause is a disjunction of literals of which at most one is positive.” 

All horn clauses can be represented in rules that have one or more antecedents (i.e. 

left-hand sides) that are conjoined (i.e. combined using ‘and operator’), and a single 

consequent (i.e. right-hand side) (Russell and Norvig 2010). Each horn clause 

represents one requirement. Its right-hand side indicates what this requirement is 

about. Its left-hand side is consisted of one or more predicates. A predicate is 

consisted of a predicate symbol and one or more arguments in parenthesis following 

the predicate symbol. Each predicate organizes information instances corresponding 

to one or more concepts and/or relations. The horn clauses representation is the target 

format for our information transformation (ITr) process. The input representation to 

ITr is the tuple format which results from IE. Each piece in the tuple is an 

“information element”. Each extracted word or phrase recognized corresponding to 

an “information element” is an “information instance”. An example illustrating input 

and output formats of ITr is shown in Table 1. 

 

Table 1. A transformation example. 

Information Extraction (Output: Tuple Format) 

Requirement Sentence Subject Compliance 

Checking 

Attribute 

Comparative 

Relation 

Quantity 

Value 

Quantity 

Unit/Reference 

Courts shall not be less 

than 3 feet in width. 

court width not less than 3 feet 

Information Transformation (Output: Logic Clause) 

Generated logic 

clause 

compliance_width_of_court(Court) :- width(Width), court(Court), 

has(Court,Width), greater_than_or_equal(Width,quantity(3,feet)). 

 

Phase 2 - Text classification. Text classification (TC) aims at recognizing 

the relevant sentences from a text corpus. Relevant sentences are the sentences that 

contain the type of information that need to be extracted and transformed into logic 
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clauses. This phase saves unnecessary processing of irrelevant sentences in later 

phases. It also avoids extraction and transformation errors caused by irrelevant 

sentences. The presentation of our TC algorithms and results is outside the scope of 

this paper. For further details on the authors’ work in the area of TC, the reader is 

referred to Salama and El-Gohary 2013.   

 

Phase 3 - Information extraction. Information extraction (IE) aims at 

recognizing the words and phrases in the relevant sentences that carry target 

information, extracting these information, and filling these information into 

pre-defined information templates. Target information is the needed information for 

constructing logic clauses that describe requirements in construction regulations. IE 

consists of feature generation, target information analysis, and development of 

extraction rules. Both syntactic (i.e. related to syntax and grammar) and semantic (i.e. 

related to context and meaning) features are used for IE. The presentation of our IE 

algorithms and results is outside the scope of this paper. For further details on the 

authors’ work in the area of IE, the reader is referred to Zhang and El-Gohary 2012. 

 

Phase 4 - Information transformation. Information transformation (ITr) 

aims at transforming the extracted information into logic clauses. ITr algorithms are 

developed using semantic mapping rules, and conflict resolution rules. The semantic 

mapping rules define how to process the information instances according to their 

semantic meaning. The semantic meaning of each information instance is defined by 

the concept or relation it is associated with. (e.g. ‘subject’ defines the semantic 

meaning for ‘court’ in the example in Table 1, i.e. it defines that ‘court’ is the 

‘subject’ of compliance checking). For example, one semantic mapping rule could be 

“If both ‘subject’ and ‘attribute’ information instances exist for an information tuple, 

then generate a fresh variable with the ‘subject’ information instance being the 

predicate symbol, generate another fresh variable with ‘attribute’ information 

instance being the predicate symbol, and a relationship ‘has’ with the two arguments 

filled by the two variables”. According to this semantic mapping rule, horn clause 

disjoints court(Court), width(Width), and has(Court,Width) will be generated for the 

statement “Courts shall not be less than 6 feet in width”, since for this requirement 

sentence, “court” is recognized as ‘subject’ information instance and “width” is 

recognized as ‘attribute’ information instance. Conflict resolution rules resolve 

conflicts between information elements. For example, one conflict resolution rule 

could be “The information instance indicating ‘comparative relation’ should appear 

before its corresponding information instance indicating ‘quantity value’, and it 

should be the nearest one to its ‘quantity value’”. According to this conflict 

resolution rule, for the requirement sentence “The openings therein shall be a 

minimum of 1/8 inch and shall not exceed 1/4 inch”, the two ‘comparative relation’ 
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information instances - ‘minimum’ and ‘not exceed’, will be coupled with the correct 

‘quantity value’ information instances - ‘1/8’ and ‘1/4’, respectively.   

 

Phase 5 - Implementation. This phase aims at implementing our algorithms for TC, 

IE, and ITr into one computational platform. For logic clause representation, we 

chose the representation of Prolog to facilitate future compliance reasoning (CR). 

Prolog is an approximate realization of the logic programming computation model on 

a sequential machine (Sterling and Shapiro 1986). We used the syntax of B-Prolog. 

B-Prolog is a Prolog system with extensions for programming concurrency, 

constraints, and interactive graphics. It has bi-directional interface with C and Java 

(Zhou 2012). We utilized two types of logic statements in B-Prolog syntax: facts, and 

rules. A rule has the form: “H :- B1, B2, …, Bn. (n>0)”. H, B1, …, Bn are atomic 

formulas. H is called the head and the right-hand side of ‘:-’ is called the body of the 

rule. A fact is a special kind of rule whose body is always true (Zhou 2012). To build 

the ground for quantitative reasoning, we develop a set of built-in rules for our logic 

clause representation. To prevent non-termination of deduction process, the “cut” 

operator in Prolog is utilized to remove choice points from alternative clauses to the 

left of the “cut”. TC and IE are implemented using GATE (General Architecture for 

Text Engineering) tools (Univ. of Sheffield 2011). GATE has a variety of built-in 

tools for a variety of text processing functions (e.g. tokenization, sentence splitting, 

POS tagging, gazetteer compiling, morphological analysis, Java Annotation Patterns 

Engine, etc.). For ITr, the semantic mapping rules and conflict resolution rules are 

implemented in Python programming language (v3.2.3). The “re” module (i.e. 

regular expression module) in Python is utilized for pattern matching, so that each 

extracted information instance could be used for subsequent processing steps based 

on their information element tags (example tags are shown in Figure 3). 

 

 

Figure 3. An example sentence with recognized information element tags. 

 

Phase 6 - Evaluation. This phase aims at evaluating the combined result of 

TC, IE, and ITr using precision (P), recall (R), and F-measure (F), where P = correct 

logic clause elements produced / total logic clause elements produced, R = correct 

logic clause elements produced / total logic clause elements ought to be produced, 

and F= 2PR/(P+R). A logic clause element is a predicate symbol or a predicate 

argument for a logic clause. For example, for the predicate court(C), ‘court’ is a logic 

clause element, and ‘C’ is also a logic clause element.  
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PRELIMINARY EXPERIMENTAL RESULTS AND ANALYSIS 

 

The proposed approach was tested on quantitative requirements in the 2006 

International Building Code (ICC 2006). Chapter 12 was randomly selected for 

testing. A quantitative requirement is a rule that defines the relationship between a 

quantitative attribute of a subject and a specific quantity. The preliminary 

experimental results are shown in Table 2.  

 

Table 2. Preliminary experiment results 

 Subject Compliance 

Checking Attribute 

Comparative 

Relation 

Quantity 

Value 

Quantity 

Unit/Reference 

Total 

Number of logic clause 

elements in gold standard 

233 163 67 76 132 671 

Total number of logic 

clause elements generated   

225 156 69 76 119 645 

Number of logic clause 

elements correctly 

generated 

210 151 63 75 119 618 

Precision  0.93 0.97 0.91 0.99 1.00 0.96 

Recall 0.90 0.93 0.94 0.99 0.90 0.92 

F-Measure 0.92 0.95 0.93 0.99 0.95 0.94 

 

To conduct our experiment, we have developed and used a small-size 

ontology to assist in the recognition and extraction of construction domain concepts 

and relations. We used the built-in ontology editor in GATE for ontology 

development. For TC and IE, we used ANNIE (A Nearly-New Information 

Extraction System) in GATE for POS tagging, and gazetteer compiling; and we used 

JAPE (Java Annotation Patterns Engine) transducer for text classification and for 

writing information extraction rules. When conducting our IE, five information 

elements were recognized: ‘subject’, ‘compliance checking attribute’, ‘comparative 

relation’, ‘quantity value’, and ‘quantity unit’ or ‘quantity reference’. A ‘subject’ is a 

‘thing’ (e.g. building object, space, etc.) that is subject to a particular regulation or 

norm. A ‘compliance checking attribute’ is a specific characteristic of a ‘subject’ by 

which its compliance is assessed. A ‘comparative relation’ is a relation commonly 

used for comparison such as greater_than_or_equal, less_than_or_equal, or equal_to, 

etc. A ‘quantity value’ is the value that quantifies the requirement. A ‘quantity unit’ 

is the unit of measure for the ‘quantity value’. A ‘quantity reference’ is a reference to 

another quantity (a quantity value and its corresponding unit). Ten and 11 semantic 

mapping rules and conflict resolution rules were developed, respectively.  

The preliminary experimental results show more than 90% performance 

(using measures of P, R, and F) for all information elements. This indicates the 
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potential effectiveness of our approach. Yet, since a 100% performance was not 

achieved, we conducted an error analysis to identify the sources of error. For 

example, in one case, the cause for not producing a logic clause element that ought to 

be produced was the use of uncommon expression structures in the text: in the 

sentence “…has as a longer side at least 65 percent open and unobstructed”, the 

“quantity reference” was not produced because the adjective “65 percent open and 

unobstructed” is not a commonly-used expression structure for “quantity reference”. 

For future improvement, to prevent/reduce the detected errors, we propose two ways 

of adapting and refining our algorithms. First, enhance our ontology-based deductive 

reasoning to better detect concepts that are implicit in the text (e.g. the ‘compliance 

checking attribute’ ‘height’ was implicit in the part of sentence “ventilators… at least 

3 feet above eave or cornice vents”). Second, add pointer-word resolution rules to 

avoid missing relations between concepts connected by pointer-words (e.g. the 

pointer-word ‘thereof’ in the part of sentence “Any room … in two thirds of the area 

thereof” connects the ‘compliance checking attribute’ ‘area’ with the ‘subject’ 

‘room’). 

 

CONCLUSION AND FUTURE WORK 

 

In this paper, the authors proposed a six-phase iterative approach for extracting 

requirements from textual regulatory documents and formalizing these requirements 

in a computer-processable format. The approach combines our text classification 

(TC), information extraction (IE), information transformation (ITr), and compliance 

reasoning (CR) algorithms into one computational platform. The paper focuses on 

presenting and discussing our information transformation algorithms, which 

transforms the extracted information, into logic-based representation ready for 

compliance reasoning. Our approach was tested in extracting and formalizing 

quantitative requirements in Chapter 12 of the 2006 International Building Code. A 

precision, recall, and F-measure of 96%, 92%, and 94%, respectively, were achieved. 

The preliminary experimental results show that our proposed approach is promising. 

For further improvement, we conducted an error analysis. As part of future/ongoing 

work, the authors will adapt and refine our algorithms to prevent/reduce the detected 

errors. Our future work on automated compliance checking will also explore 

automated IE and ITr from other types of construction documents (e.g. contract 

specifications). 
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