
1

Information Transformation and Automated Reasoning for Automated

Compliance Checking in Construction

J. Zhang1 and N. M. El-Gohary2

1Graduate Student, Department of Civil and Environmental Engineering, University

of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, IL 61801; PH

(217) 607-6006; FAX (217) 265-8039; email: jzhang70@illinois.edu
2Assistant Professor, Department of Civil and Environmental Engineering,

University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, IL

61801; PH (217) 333-6620; FAX (217) 265-8039; email: gohary@illinois.edu

ABSTRACT

This paper presents a new approach for automated compliance checking in the

construction domain. The approach utilizes semantic modeling, semantic Natural

Language Processing (NLP) techniques (including text classification and information

extraction), and logic reasoning to facilitate automated textual regulatory document

analysis and processing for extracting requirements from these documents and

formalizing these requirements in a computer-processable format. The approach

involves developing a set of algorithms and combining them into one computational

platform: 1) semantic machine-learning-based algorithms for text classification (TC),

2) hybrid syntactic-semantic rule-based algorithms for information extraction (IE), 3)

semantic rule-based algorithms for information transformation (ITr), and 4)

logic-based algorithms for compliance reasoning (CR). This paper focuses on

presenting our algorithms for ITr. A semantic logic-based representation for

construction regulatory requirements is described. Semantic mapping rules and

conflict resolution rules for transforming the extracted information into the

representation are discussed. Our combined TC, IE and ITr algorithms were tested in

extracting and formalizing quantitative requirements in the 2006 International

Building Code, achieving 96% and 92% precision and recall, respectively.

INTRODUCTION

Manual regulatory compliance checking of construction projects is costly,

time-consuming, and error-prone. Automated compliance checking (ACC) is

expected to reduce the time, cost, and errors of compliance checking. Previous

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

2

research (e.g. Tan et al. 2010, Eastman et al. 2009, Lau and Law 2004, Garrett and

Fenves 1987) and software development efforts (e.g. Solibri 2011) have undoubtedly

paved the way for ACC in the architectural, engineering, and construction (AEC)

industry. However, these efforts are limited in their automation and reasoning

capabilities; existing ACC systems require manual effort for extracting requirements

from textual regulatory documents (e.g. codes) and encoding these requirements in a

computer-processable format. To address this gap, the authors are proposing a new

approach for ACC (Zhang and El-Gohary 2012). It utilizes semantic modeling,

semantic Natural Language Processing (NLP) techniques (including text

classification and information extraction), and logic reasoning to facilitate automated

textual regulatory document analysis (e.g. code analysis) and processing for

extracting requirements from these documents and formalizing these requirements in

a computer-processable format. The approach involves developing a set of

algorithms and combining them into one computational platform: 1) semantic

machine-learning-based algorithms for text classification (TC), 2) hybrid

syntactic-semantic rule-based algorithms for information extraction (IE), 3) semantic

rule-based algorithms for information transformation (ITr), and 4) logic-based

algorithms for compliance reasoning (CR). In this paper, we focus on presenting our

algorithms for ITr.

BACKGROUND

Natural language processing (NLP) is a field of artificial intelligence (AI) that

is intended to enable computers to analyze and process natural language text or

speech in a human-like manner. Examples of NLP techniques include tokenization,

part-of-speech (POS) tagging, named entity recognition, and co-reference resolution

etc. (Marquez 2000). Information extraction (IE) is a subfield of NLP that aims at

extracting targeted information from text sources to fill in pre-defined information

templates. In our proposed ACC approach, we utilize NLP techniques because

construction codes and regulations are represented in unstructured text format. NLP

techniques will facilitate the analysis and processing of these codes and regulations

for extraction and formalization of requirements/rules.

PROPOSED AUTOMATED COMPLIANCE CHECKING APPROACH

The authors are proposing a six-phase, iterative approach for extracting

requirements from textual regulatory documents and formalizing these requirements

in a computer-processable format (Figure 1).

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

3

Information

Representation

Text

Classification

Information

Extraction

Information

Transformation
Implementation Evaluation

Figure 1. Proposed approach.

Phase 1 – Information representation. We represent the requirements in

construction regulations as first order logic-based axioms. Our representation is

limited to Horn-Clause-type axioms to facilitate further reasoning using logic

programs (logic programming can only represent sentences of the form of a Horn

Clause). “Horn clause is a disjunction of literals of which at most one is positive.”

All horn clauses can be represented in rules that have one or more antecedents (i.e.

left-hand sides) that are conjoined (i.e. combined using ‘and operator’), and a single

consequent (i.e. right-hand side) (Russell and Norvig 2010). Each horn clause

represents one requirement. Its right-hand side indicates what this requirement is

about. Its left-hand side is consisted of one or more predicates. A predicate is

consisted of a predicate symbol and one or more arguments in parenthesis following

the predicate symbol. Each predicate organizes information instances corresponding

to one or more concepts and/or relations. The horn clauses representation is the target

format for our information transformation (ITr) process. The input representation to

ITr is the tuple format which results from IE. Each piece in the tuple is an

“information element”. Each extracted word or phrase recognized corresponding to

an “information element” is an “information instance”. An example illustrating input

and output formats of ITr is shown in Table 1.

Table 1. A transformation example.

Information Extraction (Output: Tuple Format)

Requirement Sentence Subject Compliance

Checking

Attribute

Comparative

Relation

Quantity

Value

Quantity

Unit/Reference

Courts shall not be less

than 3 feet in width.

court width not less than 3 feet

Information Transformation (Output: Logic Clause)

Generated logic

clause

compliance_width_of_court(Court) :- width(Width), court(Court),

has(Court,Width), greater_than_or_equal(Width,quantity(3,feet)).

Phase 2 - Text classification. Text classification (TC) aims at recognizing

the relevant sentences from a text corpus. Relevant sentences are the sentences that

contain the type of information that need to be extracted and transformed into logic

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

4

clauses. This phase saves unnecessary processing of irrelevant sentences in later

phases. It also avoids extraction and transformation errors caused by irrelevant

sentences. The presentation of our TC algorithms and results is outside the scope of

this paper. For further details on the authors’ work in the area of TC, the reader is

referred to Salama and El-Gohary 2013.

Phase 3 - Information extraction. Information extraction (IE) aims at

recognizing the words and phrases in the relevant sentences that carry target

information, extracting these information, and filling these information into

pre-defined information templates. Target information is the needed information for

constructing logic clauses that describe requirements in construction regulations. IE

consists of feature generation, target information analysis, and development of

extraction rules. Both syntactic (i.e. related to syntax and grammar) and semantic (i.e.

related to context and meaning) features are used for IE. The presentation of our IE

algorithms and results is outside the scope of this paper. For further details on the

authors’ work in the area of IE, the reader is referred to Zhang and El-Gohary 2012.

Phase 4 - Information transformation. Information transformation (ITr)

aims at transforming the extracted information into logic clauses. ITr algorithms are

developed using semantic mapping rules, and conflict resolution rules. The semantic

mapping rules define how to process the information instances according to their

semantic meaning. The semantic meaning of each information instance is defined by

the concept or relation it is associated with. (e.g. ‘subject’ defines the semantic

meaning for ‘court’ in the example in Table 1, i.e. it defines that ‘court’ is the

‘subject’ of compliance checking). For example, one semantic mapping rule could be

“If both ‘subject’ and ‘attribute’ information instances exist for an information tuple,

then generate a fresh variable with the ‘subject’ information instance being the

predicate symbol, generate another fresh variable with ‘attribute’ information

instance being the predicate symbol, and a relationship ‘has’ with the two arguments

filled by the two variables”. According to this semantic mapping rule, horn clause

disjoints court(Court), width(Width), and has(Court,Width) will be generated for the

statement “Courts shall not be less than 6 feet in width”, since for this requirement

sentence, “court” is recognized as ‘subject’ information instance and “width” is

recognized as ‘attribute’ information instance. Conflict resolution rules resolve

conflicts between information elements. For example, one conflict resolution rule

could be “The information instance indicating ‘comparative relation’ should appear

before its corresponding information instance indicating ‘quantity value’, and it

should be the nearest one to its ‘quantity value’”. According to this conflict

resolution rule, for the requirement sentence “The openings therein shall be a

minimum of 1/8 inch and shall not exceed 1/4 inch”, the two ‘comparative relation’

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

5

information instances - ‘minimum’ and ‘not exceed’, will be coupled with the correct

‘quantity value’ information instances - ‘1/8’ and ‘1/4’, respectively.

Phase 5 - Implementation. This phase aims at implementing our algorithms for TC,

IE, and ITr into one computational platform. For logic clause representation, we

chose the representation of Prolog to facilitate future compliance reasoning (CR).

Prolog is an approximate realization of the logic programming computation model on

a sequential machine (Sterling and Shapiro 1986). We used the syntax of B-Prolog.

B-Prolog is a Prolog system with extensions for programming concurrency,

constraints, and interactive graphics. It has bi-directional interface with C and Java

(Zhou 2012). We utilized two types of logic statements in B-Prolog syntax: facts, and

rules. A rule has the form: “H :- B1, B2, …, Bn. (n>0)”. H, B1, …, Bn are atomic

formulas. H is called the head and the right-hand side of ‘:-’ is called the body of the

rule. A fact is a special kind of rule whose body is always true (Zhou 2012). To build

the ground for quantitative reasoning, we develop a set of built-in rules for our logic

clause representation. To prevent non-termination of deduction process, the “cut”

operator in Prolog is utilized to remove choice points from alternative clauses to the

left of the “cut”. TC and IE are implemented using GATE (General Architecture for

Text Engineering) tools (Univ. of Sheffield 2011). GATE has a variety of built-in

tools for a variety of text processing functions (e.g. tokenization, sentence splitting,

POS tagging, gazetteer compiling, morphological analysis, Java Annotation Patterns

Engine, etc.). For ITr, the semantic mapping rules and conflict resolution rules are

implemented in Python programming language (v3.2.3). The “re” module (i.e.

regular expression module) in Python is utilized for pattern matching, so that each

extracted information instance could be used for subsequent processing steps based

on their information element tags (example tags are shown in Figure 3).

Figure 3. An example sentence with recognized information element tags.

Phase 6 - Evaluation. This phase aims at evaluating the combined result of

TC, IE, and ITr using precision (P), recall (R), and F-measure (F), where P = correct

logic clause elements produced / total logic clause elements produced, R = correct

logic clause elements produced / total logic clause elements ought to be produced,

and F= 2PR/(P+R). A logic clause element is a predicate symbol or a predicate

argument for a logic clause. For example, for the predicate court(C), ‘court’ is a logic

clause element, and ‘C’ is also a logic clause element.

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

6

PRELIMINARY EXPERIMENTAL RESULTS AND ANALYSIS

The proposed approach was tested on quantitative requirements in the 2006

International Building Code (ICC 2006). Chapter 12 was randomly selected for

testing. A quantitative requirement is a rule that defines the relationship between a

quantitative attribute of a subject and a specific quantity. The preliminary

experimental results are shown in Table 2.

Table 2. Preliminary experiment results

 Subject Compliance

Checking Attribute

Comparative

Relation

Quantity

Value

Quantity

Unit/Reference

Total

Number of logic clause

elements in gold standard

233 163 67 76 132 671

Total number of logic

clause elements generated

225 156 69 76 119 645

Number of logic clause

elements correctly

generated

210 151 63 75 119 618

Precision 0.93 0.97 0.91 0.99 1.00 0.96

Recall 0.90 0.93 0.94 0.99 0.90 0.92

F-Measure 0.92 0.95 0.93 0.99 0.95 0.94

To conduct our experiment, we have developed and used a small-size

ontology to assist in the recognition and extraction of construction domain concepts

and relations. We used the built-in ontology editor in GATE for ontology

development. For TC and IE, we used ANNIE (A Nearly-New Information

Extraction System) in GATE for POS tagging, and gazetteer compiling; and we used

JAPE (Java Annotation Patterns Engine) transducer for text classification and for

writing information extraction rules. When conducting our IE, five information

elements were recognized: ‘subject’, ‘compliance checking attribute’, ‘comparative

relation’, ‘quantity value’, and ‘quantity unit’ or ‘quantity reference’. A ‘subject’ is a

‘thing’ (e.g. building object, space, etc.) that is subject to a particular regulation or

norm. A ‘compliance checking attribute’ is a specific characteristic of a ‘subject’ by

which its compliance is assessed. A ‘comparative relation’ is a relation commonly

used for comparison such as greater_than_or_equal, less_than_or_equal, or equal_to,

etc. A ‘quantity value’ is the value that quantifies the requirement. A ‘quantity unit’

is the unit of measure for the ‘quantity value’. A ‘quantity reference’ is a reference to

another quantity (a quantity value and its corresponding unit). Ten and 11 semantic

mapping rules and conflict resolution rules were developed, respectively.

The preliminary experimental results show more than 90% performance

(using measures of P, R, and F) for all information elements. This indicates the

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

7

potential effectiveness of our approach. Yet, since a 100% performance was not

achieved, we conducted an error analysis to identify the sources of error. For

example, in one case, the cause for not producing a logic clause element that ought to

be produced was the use of uncommon expression structures in the text: in the

sentence “…has as a longer side at least 65 percent open and unobstructed”, the

“quantity reference” was not produced because the adjective “65 percent open and

unobstructed” is not a commonly-used expression structure for “quantity reference”.

For future improvement, to prevent/reduce the detected errors, we propose two ways

of adapting and refining our algorithms. First, enhance our ontology-based deductive

reasoning to better detect concepts that are implicit in the text (e.g. the ‘compliance

checking attribute’ ‘height’ was implicit in the part of sentence “ventilators… at least

3 feet above eave or cornice vents”). Second, add pointer-word resolution rules to

avoid missing relations between concepts connected by pointer-words (e.g. the

pointer-word ‘thereof’ in the part of sentence “Any room … in two thirds of the area

thereof” connects the ‘compliance checking attribute’ ‘area’ with the ‘subject’

‘room’).

CONCLUSION AND FUTURE WORK

In this paper, the authors proposed a six-phase iterative approach for extracting

requirements from textual regulatory documents and formalizing these requirements

in a computer-processable format. The approach combines our text classification

(TC), information extraction (IE), information transformation (ITr), and compliance

reasoning (CR) algorithms into one computational platform. The paper focuses on

presenting and discussing our information transformation algorithms, which

transforms the extracted information, into logic-based representation ready for

compliance reasoning. Our approach was tested in extracting and formalizing

quantitative requirements in Chapter 12 of the 2006 International Building Code. A

precision, recall, and F-measure of 96%, 92%, and 94%, respectively, were achieved.

The preliminary experimental results show that our proposed approach is promising.

For further improvement, we conducted an error analysis. As part of future/ongoing

work, the authors will adapt and refine our algorithms to prevent/reduce the detected

errors. Our future work on automated compliance checking will also explore

automated IE and ITr from other types of construction documents (e.g. contract

specifications).

ACKNOWLEDGEMENT

This material is based upon work supported by the National Science Foundation

under Grant No. 1201170. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not

necessarily reflect the views of the National Science Foundation.

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

8

REFERENCES

Eastman, C., Lee, J., Jeong, Y., and Lee, J. (2009) “Automatic rule-based checking

of building designs.” Autom. Constr., 18(8), 1011-1033.

Garrett, J., and Fenves, S. (1987). “A knowledge-based standard processor for

structural component design.” Eng. with Comput., 2(4), 219-238.

International Code Council (ICC). (2006). “2006 International Building Code.”

<http://publicecodes.citation.com/icod/ibc/2006f2/index.htm> (Feb. 05,

2011).

Joshi, A. (1991). “Natural Language Processing.” Science, 253, 1242-1249.

Lau, G., and Law, K. (2004). “An information infrastructure for comparing

accessibility regulations and related information from multiple sources.”

Proc., 10th Intl. Conf. Comput. Civ. and Build. Eng., Weimar, Germany.

Marquez, L. (2000). “Machine learning and natural language processing.” Proc.,

“Aprendizaje automatico aplicado al procesamiento del lenguaje natural”.

Russell, S., and Norvig, P. (2010). Artificial intelligence – a modern approach (third

edition), Pearson Education, Inc., Upper Saddle River, New Jersey.

Salama, D., and El-Gohary, N. (2013). “Automated semantic text classification for

supporting automated compliance checking in construction”. J. Comput. Civ.

Eng., In Review.

Solibri. (2011). “Solibri Model Checker.”

<http://www.solibri.com/solibri-model-checker.html> (July 15, 2011).

Sterling, L., and Shapiro, E. (1986). The art of Prolog: advanced programming

techniques, MIT Press, Cambridge, Massachusetts, London, England.

Tan, X., Hammad, A., and Fazio, P. (2010) “Automated code compliance checking

for building envelope design.” J. Comput. Civ. Eng., 24(2), 203-211.

University of Sheffield. (2011). “General architecture for text engineering.”

<http://gate.ac.uk/> (Feb. 05, 2011).

Zhang, J., and El-Gohary, N. (2012). “Extraction of construction regulatory

requirements from textual documents using natural language processing

technieques.” Proc., Comput. Civ. Eng., ASCE, Reston, VA, 453-460.

Zhou, N. (2012). “B-Prolog user’s manual (version 7.7): Prolog, agent, and

constraint programming.” Afany Software.

<http://www.probp.com/manual/manual.html> (Nov. 19, 2012).

The published version is found in the ASCE Library here: http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

Zhang, J. and El-Gohary, N. (2013) Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction.

Computing in Civil Engineering (2013): pp. 701-708.

doi: 10.1061/9780784413029.088

http://www.probp.com/manual/manual.html
http://ascelibrary.org/
http://ascelibrary.org/doi/abs/10.1061/9780784413029.088

