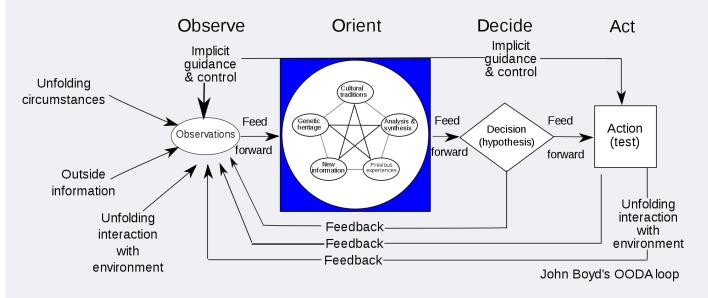


Realizing Value from Digital Engineering ... Together

Dr. John Matlik Chief of Capability – Digital Engineering Rolls-Royce Defense (US)

Purdue Digital Enterprise Center (DEC), West Lafayette, IN October 2022

Call to Action:

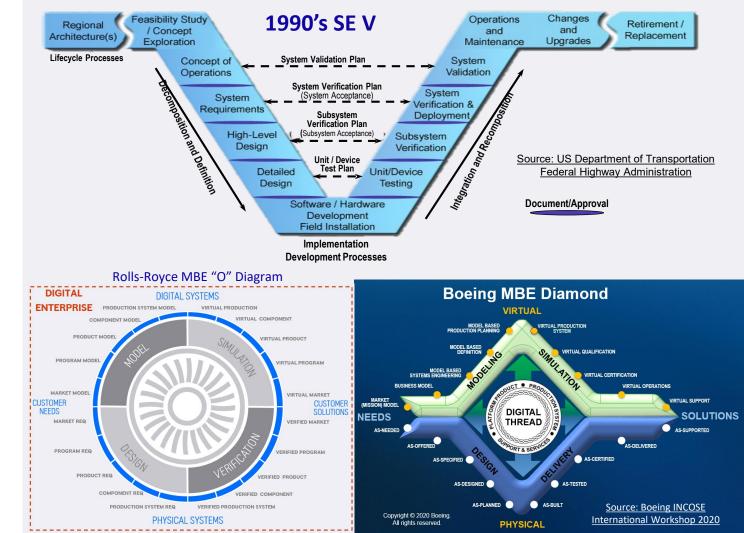

"Accelerate change or lose"

Gen. Charles Q. Brown, Jr. USAF Chief of Staff

"China is inside our OODA loop...

We need ability to change things inside our systems faster"

- Lt. Gen. Shaun Morris


Full diagram originally drawn by John Boyd for his briefings on military strategy, fighter pilot strategy, etc

Toward a Model-Based Enterprise (MBE)

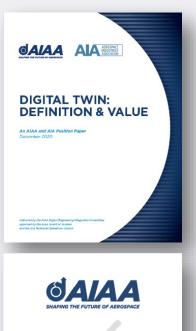
Digital Engineering in context

Leveraging developing cross-Industry alignment toward a common Model-Based Enterprise framework & taxonomy

3 Public Not Export Controlled

Industry Value Driven Alignment:

Focus on Value ... not on Digital


Leveraging Industry Position Papers to move toward alignment on definitions & value first

... then move froward on realization together.

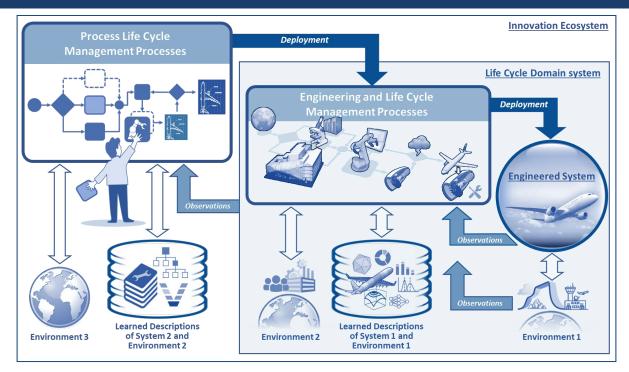
First AIAA/AIA endorsed Position Paper on Digital Twin Definition & Value

https://www.aia-aerospace.org/report/digital-twin-paper/ https://www.aiaa.org/advocacy/Policy-Papers/Institute-Position-Papers

Digital Twin: Reference Model, Realizations & Recommendations Paper Release expected imminently (i.e. Fall 2022) Endorsed across AIAA, AIA, NAFEMS & INCOSE

AIAA / AIA Digital Twin Position Papers

4 Public Not Export Controlled


Digital Twin Implementation Paper - Contributing Authors

- Steven M. Arnold (NASA Glenn Research Center)
- Hakan Aydemir (Turkish Aerospace Industries, Inc)
- Alan D. Byar (The Boeing Company)
- John J. Dong (The Boeing Company)
- Rod Dreisbach (Retired from Boeing)
- Scott Duncan (Georgia Institute of Technology)
- Mathew (Mat) French (Northrop Grumman)
- Jayendra S. Ganguli (Raytheon Technologies)
- Martin Hardwick (STEP Tools, Inc)
- Mohammed H. Kabir (The Boeing Company)
- Don A. Kinard (Lockheed Martin)
- Jung-Ho Lewe (Georgia Institute of Technology)
- Sankaran Mahadevan (Vanderbilt University)
- Marianna Maiaru (University of Massachusetts Lowell)
- John F. Matlik (Rolls-Royce Defense)
- Matt Nielsen (GE Research)
- Jude Pierre (GE Research)
- Olivia J. Pinon Fischer (Georgia Institute of Technology)
- Subhrajit Roychowdhury (GE Research)
- William D. Schindel (ICTT System Sciences)
- Nigel Taylor (MBDA)

The Digital Twin Implementation Paper is the result of a joint effort from a number of organizations representative of academia, industry and government including: AIAA, AIA, NAFEMS, INCOSE and the OMG Digital Twin Consortium

Generic Reference Model / Pattern Overview

Agile Systems Engineering Life Cycle Management (ASELCM) Logical Architecture - Level 0

Reference: Schindel, W. D. (2022). Realizing the Value Promise of Digital Engineering: Planning, Implementing, and Evolving the Ecosystem. *INSIGHT*, 25(1), 42-49. Reference: "Report on the AIAA DEIC Digital Thread Position Paper: Digital Thread Subcommittee", AIAA Aviation Forum, Chicago, 30 June 2022

Selected Digital Twins Case Studies

Realization Case Studies

- 1. Cygnus Orbital Ferry Vehicle Twin (Northrop Grumman)
- 2. Aurora D8 Airliner Advanced Composite Twin (NASA)
- 3. Rotorcraft Component Twin (Vanderbilt University)
- 4. Manufacturing Twin Family (Raytheon Technologies / STEP Tools, Inc)
- 5. Airplane Seat Certification Twin (The Boeing Company)
- 6. Building Twin (Georgia Tech)
- 7. Digital Ghost Cybersecurity for critical assets leveraging Digital Twins (GE Research)
- 8. Iron Bird Digital Twin (Turkish Aerospace Industries, Inc)

Use Case attributes & intent:

Open & Non-proprietary

7

- Stay aligned to Position Paper
- > Pervasively relevant & prioritized by multiple Orgs to get "Aerospace Voice"
- Demonstrate vertical alignment (cross supply chain/system) & horizontal alignment (across life cycle) for Space, Air and Ground Use Cases
- Case Studies/Use Cases will be a select subset configured from the much larger Digital Twin reference/pattern model

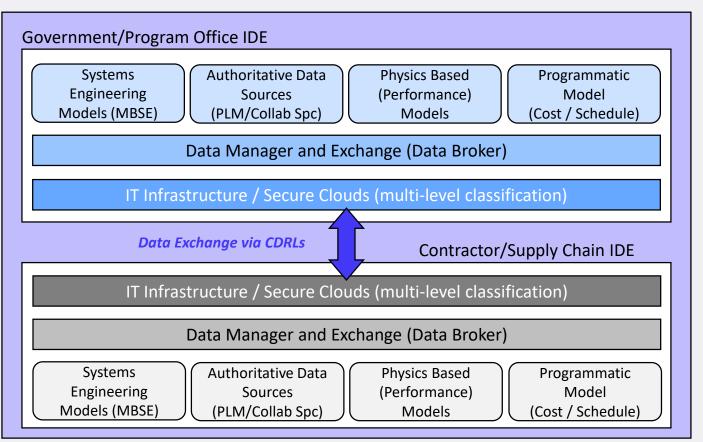
Papers anchored in actual realizations

Industry Recommendations - Methodology

- Adopt a methodology that ...
 - 1. Requires enterprise level systems engineering
 - > Managing change across enterprise functional silos and life cycle stages
 - > Representing the enterprise system in an integrated way
 - 2. Aligns with *related enterprise efforts*
 - > Leverage many programs of change across Aerospace Industry
 - > Promote complement, not compete where possible
 - 3. Manages 'trust' over time
 - > Understand level of model trust for the decision being informed
 - > Conscious management of Digital Twin credibility as model of a real system
 - 4. Pursues on-going *multi-level group learning*
 - > Leverage Digital Twins as "learning" of the real-world systems they describe
 - > Realize learning occurs at all levels of a system of systems

Industry Recommendations – Future Steps

- Create/leverage Aerospace Digital Transformation Consortia
 - 1. Tactical: Provide focus
 - > Define & launch appropriately **scoped pathfinders** (e.g. JADC2, CBM+, LCAAT)
 - > Accelerate adoption of **digital inspection** across supply chain & life cycle
 - 2. Strategic: Ensure scalability
 - > Realize consistency management for digital engineering
 - > Establish trust in models and use of models
 - > Promote digital **standardization**
 - 3. Marketing: Promote awareness
 - > Facilitate cross consortium **collaboration**
 - Benchmark and publicize benefits
 - 4. **Political:** influence policy & regulation
 - > Inform creation of smart **policy & regulation**
 - > Facilitate realization of digital airworthiness certification
 - 5. Education: Inform workforce development
 - > Focus tools and methods development
 - > Establish digital maturity model and assessments
 - > Leverage **competitions & grand challenges**

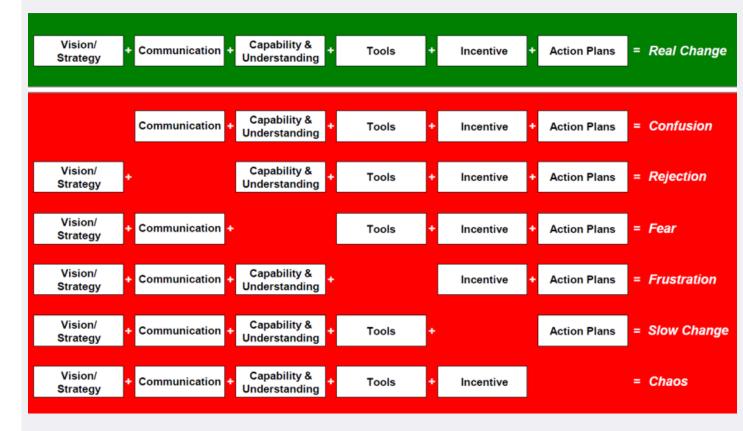


Our New Digital Collaboration Reality

Secure cloud enables increased collaboration across lifecycle and across supply chain

Collaboration must respect Security, Export and Intellectual Property

Integrated Digital Environment (IDE)


Respecting Cultural Realities When Driving Change

Courtesy Bob Bucci 2018 Lincoln Award Winner ASIP Conference

http://www.asipcon.com/pages/li ncoln2018.html

11 Public Not Export Controlled

Elements required for real change

Summary

To accelerate value realization from Digital Engineering together we must:

- Focus on value (not digital)
- Consider Operations (not only Technology)
- Pursue collaboration (vs silos)
- Learn by doing (vs discussing)
- Leverage reference model(s) (vs one-off projects)
- Realize standardization (vs immature standards)
- Establish trust (in models, environments & teams)
- Respect Culture, Intellectual Property & Security

