Hardware-Intrinsic Identity for IP Protection

John Ross Wallrabenstein

Sypris Research

Trusted Solutions... From Thought to Finish

Providing Trusted Solutions that Secure our Customers' Interests Globally

Sypris Electronics

SyprisElectronics.com

Department of Computer Science

Research Agenda for PLM Security

Critical requirements:

PURDUE

- · Protection from Insider Threat
- Compliance with Export Regulations
- Secure Supply Chain
- Secure Remote 3D Printing
- Security for Industrial Control Systems
- Secure Collaboration Techniques
- Security Techniques for Networks-of-Things (NoT)

Research directions:

- Anomaly Detection Systems and Advanced Access Control Systems
- Security Techniques for Embedded Systems, and Firmware
- Security for Industrial Cyber-Physical Systems and Industrial Processes
- Secure Collaboration Platforms
- Tools for Compliance Support

How is digital information shared securely?

SyprisElectronics.com

- How is digital information shared securely?
 - Cryptography

SyprisElectronics.com

- How is digital information shared securely?
 - Cryptography
- What prevents an adversary from intercepting the information?

SyprisElectronics.com

- How is digital information shared securely?
 - Cryptography
- What prevents an adversary from intercepting the information?
 - Assumption: Adversary cannot obtain private key of recipient

Identity: Traditional Cryptographic Systems

Symmetric Cryptography

Symmetric Private Key Stored on Drive

SyprisElectronics.com

Identity: Traditional Cryptographic Systems

Asymmetric Private Key Stored on Drive

SyprisElectronics.com

Powerful Adversaries

SyprisElectronics.com

Identity: Traditional Approach Limitations

Symmetric Cryptography	Asymmetric Cryptography	Limitations
Generated Identity		Transfer Identity Store Private Data Manage Private Keys No Tamper Protection Remote Compromise Device & Identity Independent

Identity is Stored

SyprisElectronics.com

Secure Hardware Solutions

Secure Hardware

- Rugged Enclosure
- Tamper Resistance
- Epoxy Coating
- Battery Hold-Up

Limitations

- Size & Weight
- ▶ \$\$\$

PUF-Based Identity Management

Identity is Dynamically Regenerated As Needed

SyprisElectronics.com

Physical Unclonable Functions

- A PUF is input a challenge, and outputs a response
- Mapping based on unique physical characteristics of device
- PUFs on different devices will return different responses for the same challenge

Core PUF Features

Identity Management:
Extract identity *intrinsically linked* to hardware

Tamper Detection:

Detect hardware tampering after trusted enrollment

Key Management:

Private key regenerated as needed, rather than stored

SyprisElectronics.com

Identity

SyprisElectronics.com

001010010110101101101 1011011110001010011101 001010001010010101010 1001110111101000010110 ACCEPT 0101010111100101100011 1010110100010110100010 Identical Different Challenge Responses 0010100101101011011010 00111011111011100110101 001010001010010101010 011101010101010100101 REJECT 1010110100010110100010 010011010101010100100

Core Concept: Identically manufactured devices have different hardware identities

Tamper Detection

Core Concept: Hardware tampering fundamentally changes hardware identity

SyprisElectronics.com

Key Properties

- **Resilience to Compromise:** *No* secret information is stored at *either* the device or server:
 - A device does not have any sensitive information stored in nonvolatile memory: the private key is dynamically regenerated as needed.
 - A server only stores the public keys of the devices.

Resilience to Tampering:

- Tampering (e.g., probing, modification) alters the unique characteristics of the hardware
- Prevents the PUF from extracting the original identity of the device

SyprisElectronics.com

Deploying PUFs in Practice

- PUFs (like human biometrics) have noisy output
 - What if error correction "corrects" a different device's response?
 - What is the false positive and false negative rate?
- PUFs rely on slight manufacturing variations
 - How will fluctuations in temperature/voltage/etc. affect the response?

Overlapping Distributions

SyprisElectronics.com

Separate Distributions

SyprisElectronics.com

Experimentally Observed Distributions

TRUSTED SOLUTIONS ... FROM THOUGHT TO FINISH.

SyprisElectronics.com

Deploying PUFs in Practice

- PUFs have noisy output
 - What if error correction "corrects" a different device's response?
 - Experimental results suggest this occurs with only negligible probability
 - What is the false positive and false negative rate?
 - 0% in practice
 - Likely only under rapid and substantial variation
- PUFs rely on slight manufacturing variations
 - How will fluctuations in temperature/voltage/etc. affect the response?
 - Xilinx board placed in a temperature chamber
 - Varied from $0-60\,^{\circ}\mathrm{C}$
 - PUF output shift of pprox 5-10 bits

PUF-Based Benefits for PLM Solutions

• Hardware-Intrinsic Identity:

Guarantee recipient has a specific piece of hardware

Tamper Detection:

Guarantee no adversarial tampering with recipient hardware

Key Management:

Guarantee an adversary cannot extract private key from recipient hardware

Discussion

Questions

SyprisElectronics.com

