Team 16

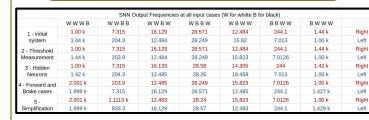
Customer Background

Dr. Robert Nawrocki

- Primary research in neuromorphic systems and flexible organic electronics
- Project will be used as a base for future research using organic components

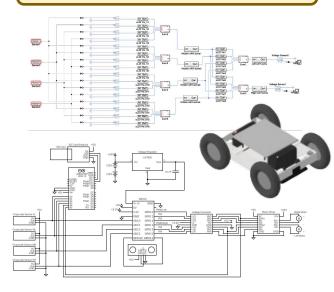
Problem Statement / Scope of Work

- Implementation
 - Spiking Neural Network (SNN)
 - FPGA (Verilog & VHDL code)
 - Analog Grayscale Sensors
- Advantages of SNN Usage
 - Readily available hardware
 - Low power
 - Adaptable


Requirements

Req.	DESIGN REQUIREMENTS	DESIGN TARGETS	VALIDATION			
#	RATIONALE					
1	Neural Network must be Hardware Implemented with low power requirements.	Runs off of USB power source (5V 0.5A [15])	Implement on FPGA powered by USB [12]			
	This system must be portable as it will be used to control a small vehicle with limited battery power. The current control method of the vehicle uses an FPGA and to keep the design simple, the initial SNN will be implemented on a similar device [12].					
2	Neural Network must have an output react to input changes similar to biological reactions.	Outputs spike with consecutive changes in inputs.	System maneuvers through curves on testing tracks.			
	The more biological-like process found in a Spiking Neural Network allows the system to be more adaptable and require less power [9].					
3	Initial AHDL based system follows track completely.	Vehicle completes track in both directions.	Run autonomous vehicle on track.			
	Training system should be able to correctly run the full course [14].					

Autonomous Neuromorphic Car


Team Members : Nicholas Bartoch, Alex Pippin, Megan Daniel, Phillip Salowe, Ronell Chakola Mentors/Customers: Dr. Robert Nawrocki, Dr. Yi Yang Professors: Dr. Fred Berry

Experimentation and Concepts

A threshold was given when determining white and black lines on the track

Final Design

PURDUE POLYTECHNIC

FMEA

Company Name		F	Purdue University		Subject
Engineering Loca		West Lafayette, IN			
Customer Name F			Robert Nawrocki		DFMEA Revision Dat
Model Year(s)/P		2022			
STRUCTU	RE ANALYSIS	(STEP 2)	FUNC	TION ANALYSIS (ST	EP 3)
1. Next Higher	2. Focus	3. Next Lower	1. Next Higher Level	2. Focus Element	3. Next Lower Level
Level	Element	Level	Function and	Function and	Function and
		or	Requirement	Requirement	Requirement or
		Characteristic			Characteristic
*	-	Туре	Ψ.	*	*
Power Supply	12V battery	Battery Mounts	Supply power to the components of the car	Powers the motors to drive the car	battery mounts allow for maneuverability
Motor Control	H-Bridge Motor Driver Board	Motor controller plate	Take inputs from the DE10 to control the motors	Control the H-bridge motors	Electronic Mount
Board Control	DE-10 Lite Board	FPGA Board GPIO Ports	0	Senses the track in order to orient the car correctly	sensors mounted under car to read the track

Testing

		Track Testing	
Turn Type	Test	Details	Outcome
Straight 90 Deg	Place down 2 straight continuous tape paths for the car to follow	Start the vehicle on a stand to begin the test, plug the SD card in to the breakout module then set the car down onto the track. Let the car follow the track until it has completed the desired nath	The outcome should produce the same frequency for the left and right output
	Place down 2 paths or tape in roughly 5-6 segments to create a curve		Depending on the direction of the curve, the left or the right frequency should be slightly larger than the othe causing the vehicle to turn

[9] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou, "Low-Power Neuromorphic Hardware for Signal Processing Applications: A Review of Architectural and System-Level Design Approaches," IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 97–110, Nov. 2019, doi: 10.1109/MSP.2019.2933719.

[12] T. Technologies, "Terasic - All FPGA Boards - MAX 10 - DE10-Lite Board." https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=218&No =1021&PartNo=Ziheading (accessed Sep. 12, 2022).

[14] M. Vanmali, M. Last, and A. Kandel, "Using a neural network in the software testing process," Int. J. Intell. Syst., vol. 17, pp. 45–62, Jan. 2002, doi: 10.1002/int.1002.

[15] "What are the Maximum Power Output and Data Transfer Rates for the USB Standards?" https://resources.pcb.cadence.com/blog/2020-what-are-the-masimum-power-output-and-data-t ransfer-rates-for-the-usb-standards (accessed Sep. 12, 2022).