

Weaving the Digital Thread Eli Ribble

Background - Eli Ribble

MSc from University of Utah

Built simulations platform at L3 (MPRI)

Built digital assessment platform at HireVue

CTO at Authentise

Background - Authentise

Started in secure digital streaming and DRM

- · Worked with 67 partners around the world Lowes, Stratasys, HP
- · Services division to tailor solutions for major customers
 - Partnered with WiPro
- From there built a platform on discrete services for Digital Manufacturing
 - 30 different modules nesting, rendering, toolpath generation, in-process monitoring
 - Modules are separable, composable and integrate with 3rd parties

Hardware Layout

Central File Server

Software Layout

Design

Preparation

Implementation

Ideal Time Series

Updated Design

Actual Time Series

Issues Through Time

Issues Through Software

Design

Preparation

Implementation

Issues Through Hardware

Major Issues

- Traceability Who did what to the design when based on what feedback?
 - Extending the control loop
- Fidelity Is the product produced representative of the design?
 - Regulatory compliance
- Security Was the initiator of change properly permitted to do so?
 - Role-based computing
 - IP Protection

Rebuilding from the ground up

- Air-gapping decreases security
 - Two networks with separate policies
 - Duplicate monitoring resources
 - Extremely hard to track legitimate actions cross-gap
- Common filesystems are too flexible
 - Coordinating revisions requires coordinating people and practices
 - Un-intelligent auditing
 - Policy is the only thing keeping related assets together
- AM device state is a black box
 - Only a few trained technicians know about or deal with AM devices
 - Those who interact with AM devices are layers removed from those who design its output

AM Devices

Updated Hardware Layout

- Central CAM File Server is only accessible to the Comptroller
- All CAM data access goes through the Comptroller
- No air-gap. Printers are networked, but properly firewalled
- All AM Device access goes through the comptroller and the device firewall

Developer

Updated Software Layout

Preparation

Implementation

And Actor uses a Tool, such as SolidWorks, to produce an artifact. This artifact is entirely new and therefore has no history

AUTHENTISE

Asset Creation 2

The Actor cryptographically signs the artifact with a personal key The Tool cryptographically signs the artifact with a version-specific key This cryptographically guarantees the 'who' and the 'how'

Together these keys and the artifact certify to the Comptroller the origin of a new asset

AUTHENTISE

The Comptroller signs the asset and makes it available to a new Actor through a secure channel working on a new tool in a downstream process.

Tool

Signed Part History

Every change or usage of an asset becomes part of network of changes showing precise history

Cryptographic signatures guarantee integrity of provenance data

This includes signatures from AM Devices that manufacture parts

Provenance

Every part maintains a cryptographically secure provenance document

Includes AM Device signature and parameters at moment of creation

Provenance can be augmented postproduction with QA analysis

Security Considerations

Each tool in the chain receives instructions from a user, a user's key and data inputs from the Comptroller

The Comptroller can deny actions

User's roles

Organization policies

Failed intrusion detection checks

Content-creator imposed constraints (DRM)

The Comptroller validates new artifact signatures to identify tool tampering

Comptroller Internals

Comptroller is conceptually, not architecturally monolithic

High availability and scalability can be applied to each component separately

Comptroller in the large

Systems can be created between organizations by allowing Comptrollers to communicate

Requests for data and updates are handled cross-organization via the same key/signature mechanisms

IP protection is handled by controlling data access and artifact creation

Requests for changes in ownership become part of the provenance chain

Required Components

Cooperation from AM Device OEMs for parameter capture & control, secure streaming

Standards agreement between software providers on crypto signature

Plugins for data file transport to/from Comptroller

Drawbacks

Single point of failure: Comptroller

Mitigation: separate components, scale independently

Intrusion detection is harder than air gapping

Mitigation: Standardization of approaches means you don't, and shouldn't, do it alone

Crypto means more steps in an already long process

Mitigation: Automation and good tool support makes this invisible. How hard is SSL?

No offline mode

Mitigation: Signatures can be baked into open file formats, public keys can be locally cached and validated, actions for Comptroller can be queued

Does not address physical security

True, but it is better at detecting breach, nefarious modification and sabotage

Issues through Time - Revisited

Issues through Software - Revisited

Design

Preparation

Implementation

Issues Through Hardware

Major Issues Revisited

Traceability - Who did what to the design when based on what feedback?

Cryptographic signatures ensure who and the what and the when

Automatic history indicates feedback used at each step - QA, device parameters, etc

Fidelity - Is the product produced representative of the design?

New design versions pushed down to devices

Device feedback pushed up to designers

Security - Was the initiator of change properly permitted to do so?

Crypto keys authenticate user and tool

Authorization at each asset change

Direct control of AM Device detects and prevents hardware exploits

Conclusions

A unidirectional data flow between vendor silos cannot scale

Embracing interconnected tools enhances security, fidelity and traceability

Cryptographic keys leave processes flexible while maximizing centralized control and asset management.

Security-in-depth vs perimeter security

Feedback data should be automatically matched to asset versions

