MODEL-BASED DEFINITION ACROSS THE LIFECYCLE

Nathan Hartman, Ed.D.
Major topics

• What is PLM?
• Collaboration
• MBD/information model/interfaces (human and machine)
• MBE becoming a business environment (merger with ERP and analytics)
• Managing attributes, not files
• Supply network integration/need model-based processes
• Ongoing challenges
What is PLM?

The digital product definition forms the core of how product and process information is moved through an organization.
The collaboration journey...

Yesterday

- Collaboration meant face-to-face communication
- Communications often in serial fashion
- You trusted the data because you trusted the person that generated the data
The collaboration journey...

Tomorrow

The **3D digital definition** becomes the *conduit* in a standards-based communication process.

The product *model* is the basis for a **secure**, **authoritative** source of product definition.

You come to *trust the process* that generates product data (because the person may be unknown).
Evolution of model-based representations

An exercise in information flow: right place, right form, right time

- Increased sophistication in the digital product and process representations and their fidelity to the physical world.

Cycle:
1. Lifecycle based
2. Virtual environment based
3. MBx based
4. CAD based
5. Drawing based
6. MBx based
7. CAD based
8. Drawing based
9. MBx based
10. CAD based
11. Drawing based
12. MBx based
13. CAD based
14. Drawing based
15. MBx based
16. CAD based
17. Drawing based
18. MBx based
19. CAD based
20. Drawing based
21. MBx based
22. CAD based
23. Drawing based
24. MBx based
25. CAD based
26. Drawing based
27. MBx based
28. CAD based
29. Drawing based
30. MBx based
31. CAD based
32. Drawing based
33. MBx based
34. CAD based
35. Drawing based
36. MBx based
37. CAD based
38. Drawing based
39. MBx based
40. CAD based
41. Drawing based
42. MBx based
43. CAD based
44. Drawing based
45. MBx based
46. CAD based
47. Drawing based
48. MBx based
49. CAD based
50. Drawing based
51. MBx based
52. CAD based
53. Drawing based
54. MBx based
55. CAD based
56. Drawing based
57. MBx based
58. CAD based
59. Drawing based
60. MBx based
61. CAD based
62. Drawing based
63. MBx based
64. CAD based
65. Drawing based
66. MBx based
67. CAD based
68. Drawing based
69. MBx based
70. CAD based
71. Drawing based
72. MBx based
73. CAD based
74. Drawing based
75. MBx based
76. CAD based
77. Drawing based
78. MBx based
79. CAD based
80. Drawing based
81. MBx based
82. CAD based
83. Drawing based
84. MBx based
85. CAD based
86. Drawing based
87. MBx based
88. CAD based
89. Drawing based
90. MBx based
91. CAD based
92. Drawing based
93. MBx based
94. CAD based
95. Drawing based
96. MBx based
97. CAD based
98. Drawing based
99. MBx based
100. CAD based
101. Drawing based
102. MBx based
103. CAD based
104. Drawing based
105. MBx based
106. CAD based
107. Drawing based
The communications spectrum...

A complete MBD supports lifecycle communication

SHAPE

BEHAVIOR

CONTEXT

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Standard</th>
<th>UNI/ASTM</th>
<th>Unit</th>
<th>Value</th>
<th>Testing Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Thickness</td>
<td>DIN EN ISO 14032</td>
<td>0.0894</td>
<td>mm</td>
<td>7.5</td>
<td>every hour</td>
</tr>
<tr>
<td>Density (Black's density)</td>
<td>DIN 1047</td>
<td>2025</td>
<td>g/cm³</td>
<td>10</td>
<td>per production run</td>
</tr>
<tr>
<td>Bulk Density (Black's)</td>
<td>DIN 1047</td>
<td>2025</td>
<td>g/cm³</td>
<td>10</td>
<td>per production run</td>
</tr>
<tr>
<td>Ultimate Tensile Strength</td>
<td>DIN EN ISO 527</td>
<td>0.6695</td>
<td>MPa</td>
<td>≥ 15</td>
<td>per production run</td>
</tr>
<tr>
<td>Elongation at Yield</td>
<td>DIN EN ISO 880</td>
<td>0.6693</td>
<td>%</td>
<td>≥ 5</td>
<td>per production run</td>
</tr>
<tr>
<td>Elongation at Break</td>
<td>DIN EN ISO 880</td>
<td>0.6693</td>
<td>%</td>
<td>≥ 200</td>
<td>per production run</td>
</tr>
<tr>
<td>Instrumental Fracture Test</td>
<td>DIN EN ISO 608-3</td>
<td>0.4823</td>
<td>N (m)</td>
<td>≥ 300</td>
<td>per production run</td>
</tr>
</tbody>
</table>

HUMAN TO HUMAN

HUMAN TO MACHINE

MACHINE TO HUMAN

MACHINE TO MACHINE
MBD and the digital enterprise

Making PLM a business platform

- The merger and sharing of data between historical PDM and ERP systems to make a next-generation PLM platform.
- Real-time intelligence to deliver product data in context.
- Ontologies that drive product data interoperability that include behavior and context, as well as shape definition.
- A holistic model-based definition that can accurately and dynamically carry non-engineering attributes.
- Understanding the impacts of product data as a form of intellectual “currency” in the sociotechnical system.
Moving away from files...

Proprietary formats lead to interoperability and archival challenges.
Integrating the supply chain
Production, Sustainment, Recycling

- Internal production
- Design-Make
- Make-to-model
Ongoing challenges

- Driving product lifecycle data with high fidelity representations
- Product data complexity
 - Shape
 - Behavior
 - Context
- Product complexity: combination of mechanical, electrical, and software
- The merger of PLM and Systems Engineering
- Modular data structures to support the distributed enterprise
- Mobility, Collaboration, and Interfaces
- High Performance Computing and Analytics
 - Business drivers
 - Closing the PLM information gap ➔ making it circular
 - Data mining linked to the model-based representation
MODEL-BASED DEFINITION ACROSS THE LIFECYCLE