Team # 27 Revitalizing Insulated Pipe Hanging Standards Team # 27

Team Members: Ben Doody, David Vandygriff, Will Corneil, Alex Zoborosky

Experimentation and Concepts

Final Design

Mentors: Dr. Leach, Dr. Fred Berry

Customer Background

Team 27's Client, who wishes to remain anonymous, is a company located in Mishawaka Indiana. They specialize in the components used to hang insulated pipe, and they wish to do so in the cheapest and safest way possible, without risking the integrity of the surrounding material itself.

Problem Statement / Scope of Work

The Client tasked team 27 with creating a testing unit and FEA analysis to prove industry standards. This will give their cliental precise quotes confidence in the products.

	n		-	Z	
		8	//=	11	6'
	20	1	11/	11	sheed
-	LE	T	11	_ 11	H
1.000	War				

Electric Winch Draft

Strengths:

- Similar to Clients Original Idea
- Repeatable
- No manual crank needed Weaknesses:
- Requires Electricity
- Does not distribute force
- Hard to set up each test

<u>Testing Head Mk I</u>

Strengths:

- Cheap and Easy to Produce
- Distributes Weight Easily

Cons:

- Cannot Withstand Forces Needed
- Not Durable

2. Focus Element	2. Focus Element Function and Requirement	1. Sailure Effects (FE) to	Serverity (5) of FE	2. Failure Mode (FM) of the Focus Element	3. Fallure Cause (FC) of the Next Lawer Element or Oniaracteristic	Current Prevention Control (PC) of FC	Douirence (0) af FC	Current Detection Cuntrols (DC) of FC or FM	Defaction [D] af	DFMEA Presentive Action	OFMEA Detection Action
H Frame Press	Standy Structure that wont break or buckle under the applied load.	It will render the press incperable	9	the frame can bend or break from the resulting force	the frame could bend from the forces that could cause th	Do nat overstress the press	2	Visual Inspection	2	Do not overstress the press	Keep Eyes and cars open while operating th system
PSI Guage	Needs to measure the forces applied to sample	Will be unable to read the pressure therefore a the test results will be useless	•	The gauge will tack out	Too much pressure or a guage not built for certain pressures	Ensure that the Geoge one use is for a high enough PSI	3	Visual inspection and careful operation	7	Won't overpressure the press	Keep Eyes and ears open while operating th system
Hydraulic Press. Hoad	Needs to be able to withstard the forces during testing	best flature will be inoperable due to inability to properly direct force	9	Press Head breaks during a test	hydraulic press head is improperly machined and is not able to properly apply load to ishield	press head is machined according to current correct specification	2	Visual Inspection	7	Use a strong anough metal in the beam to ensure a safe load	Keep Eyes and ears open while operating th system
Pipe Simulator (Round Stock)	Pipe Simulator must be properly adjusted and aligned to ensure simulation of	testing results are likely to be incorrect	6	Round Stock is improparly adjusted or misaligned	User end, improper setup during testing process	Inspect roundstock prior to use in testing process	2	Visual Inspection	7	Make sure it is properly aligned before each use	Keep Eyes and wars open while operating th

FMEA

DESCRIPTION DESCRIPTION VALIDATION DESCRIPTION DESCRIPTION VALIDATION mask to be the second of the frage result of the second of the

	Without proper data the client will not be able to convey to client as well pricing and strength of the system they are quoting								
3	Be able to test different round stock sizes from 0-12 inches in diameter	Be able to have anlog material sizes that covers the main sizes our client covers	Our cliedet has a wide varity of material they support						
	cound stock variying from under 1/2 inch to over 12 inches in diameter will not be useful for testing								
4	have finite analysis of the model created in solidworks	Have provided material created and tested in solidworks	Having cad software analysis readouts						
	The client specifically noted that he wanted a finite analaysis on hand for the different units tested								
s la	be able to chart product failure points of the material noted in length, width, and psi	having an excel spreedsheet with failure points captured	An excel sheet that has set data in it as well as theoristical fishere points						
	The material come in multiple gauges and lengths and there needs to be reasoning behind the selection for potiential customers								
6	be able to chart product failure points of blocks noted in length, width, and pai	having as excel spreedaheet with failure points captured	An encel sheet that has set data in it as well as theoristical failure points						
	The blocks come in 2 varies of wood and one foam composite that don't have know finiture points								

- Working hydraulic testing press
- Realistic product failure in SolidWorks
- Failure charting
- Work withing budget

		Testing Head	
Completed Hydraulic Press		ver Man (0/m*2) 2.706+47 2.496+47	L
-0:0-	Part Assembly	Lover Second Control C	
Load Cell		Solid Works Simulation	

Testing

Testing load cell